Kubiś, Wiesław Banach spaces with projectional skeletons. (English) Zbl 1166.46008 J. Math. Anal. Appl. 350, No. 2, 758-776 (2009). A partially ordered set \(\Gamma\) is directed if, for every \(\gamma_0,\gamma_1\in \Gamma\), there is \(\delta\in \Gamma\) such that \(\gamma_0\leq\delta\) and \(\gamma_1\leq\delta\). Let \(X\) be a Banach space. A projectional skeleton in \(X\) is a family \(\{P_{\gamma}\}_{\gamma\in\Gamma}\) of bounded projections of \(X\) indexed by a directed partially ordered set \(\Gamma\), satisfying the following conditions: (1) \(X=\bigcup_{\gamma\in\Gamma}P_{\gamma}X\) and each \(P{\gamma}X\) is separable; (2) \(\gamma\leq\delta\Rightarrow P_{\gamma}=P_{\gamma}\circ P_{\delta}=P_{\delta}\circ P_{\gamma}\); (3) if \(\gamma_0\leq\gamma_1\leq\dots\), then \(\delta=\sup_n\gamma_n\) exists in \(\Gamma\) and \(P_{\delta}X=\mathrm{cl}(\bigcup_nP_{\gamma_n}X)\). For \(\mathcal{C}(K)\) spaces, this notion is dual to the retractional skeletons in compact spaces, introduced by W.Kubiś and H.Michalewski [Topology Appl.153, No.14, 2560–2573 (2006; Zbl 1138.54024)].In the paper under review, a systematic investigation of the projectional skeletons is presented. In particular, every space with a projectional skeleton has a projectional resolution of the identity. The class of Banach spaces with projectional skeletons is strictly larger than the class of spaces with countably norming Markushevich bases (\(M\)-bases), and a Banach space has a commutative projectional skeleton if and only if it has a countably norming \(M\)-basis. An essential method of proof is using elementary substructures in logic. The paper contains open problems.Reviewers remark. The answer to Question 3 (Does every closed subspace of a Banach space with a projectional skeleton have the separable complementation property (SCP)?) is negative. T.Figiel, W.Johnson and A.Pełczyński [“Some approximation properties of Banach spaces and Banach lattices”, Isr.J.Math.(to appear)] have constructed a Banach space \(\mathcal{C}(K)\) whose dual contains a subspace without the SCP. The dual \(\mathcal{C}(K)^*\) has a countably norming \(M\)-basis [O.Kalenda, J. Math.Anal.Appl.340, 81–101 (2008; Zbl 1138.46013)], hence a projectional skeleton. Reviewer: Anatolij M. Plichko (Krakow) Cited in 4 ReviewsCited in 31 Documents MSC: 46B26 Nonseparable Banach spaces 54C15 Retraction 03C98 Applications of model theory Keywords:projection; projectional skeleton; norming set; projective sequence; Plichko space Citations:Zbl 1138.54024; Zbl 1138.46013 PDFBibTeX XMLCite \textit{W. Kubiś}, J. Math. Anal. Appl. 350, No. 2, 758--776 (2009; Zbl 1166.46008) Full Text: DOI arXiv References: [1] Amir, D.; Lindenstrauss, J., The structure of weakly compact sets in Banach spaces, Ann. of Math. (2), 88, 35-46 (1968) · Zbl 0164.14903 [2] Argyros, S.; Mercourakis, S.; Negrepontis, S., Functional-analytic properties of Corson-compact spaces, Studia Math., 89, 3, 197-229 (1988) · Zbl 0656.46014 [3] Banakh, T.; Kubiś, W., Spaces of continuous functions over Dugundji compacta (2006), preprint [4] Bandlow, I., A characterization of Corson-compact spaces, Comment. Math. Univ. Carolin., 32, 3, 545-550 (1991) · Zbl 0769.54025 [5] Bandlow, I., On function spaces of Corson-compact spaces, Comment. Math. Univ. Carolin., 35, 2, 347-356 (1994) · Zbl 0835.54016 [6] Burke, M. R.; Kubiś, W.; Todorčević, S., Kadec norms on spaces of continuous functions, Serdica Math. J., 32, 2-3, 227-258 (2006) · Zbl 1164.46303 [7] Deville, R.; Godefroy, G.; Zizler, V., Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math., vol. 64 (1993), Longman Scientific & Technical: Longman Scientific & Technical Harlow · Zbl 0782.46019 [8] Dow, A., An introduction to applications of elementary submodels to topology, Topology Proc., 13, 1, 17-72 (1988) · Zbl 0696.03024 [9] Fabián, M.; Godefroy, G., The dual of every Asplund space admits a projectional resolution of the identity, Studia Math., 91, 2, 141-151 (1988) · Zbl 0692.46012 [10] Fabián, M. J., Gâteaux Differentiability of Convex Functions and Topology: Weak Asplund Spaces, Canad. Math. Soc. Ser. Monogr. Adv. Texts (1997), John Wiley & Sons Inc.: John Wiley & Sons Inc. New York · Zbl 0883.46011 [11] Gowers, W. T.; Maurey, B., The unconditional basic sequence problem, J. Amer. Math. Soc., 6, 4, 851-874 (1993) · Zbl 0827.46008 [12] Gul’ko, S. P., Properties of sets that lie in Σ-products, Dokl. Akad. Nauk SSSR, 237, 3, 505-508 (1977) [13] Gul’ko, S. P., The structure of spaces of continuous functions and their hereditary paracompactness, Uspekhi Mat. Nauk, 34, 6(210), 33-40 (1979) · Zbl 0446.46014 [14] Gul’ko, S. P., Semilattice of retractions and the properties of continuous function spaces of partial maps, (Recent Progress in Function Spaces. Recent Progress in Function Spaces, Quad. Mat., vol. 3 (1998), Dept. Math., Seconda Univ. Napoli: Dept. Math., Seconda Univ. Napoli Caserta), 93-155 · Zbl 0968.54010 [15] Heinrich, S.; Mankiewicz, P., Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, Studia Math., 73, 3, 225-251 (1982) · Zbl 0506.46008 [16] Kalenda, O., A characterization of Valdivia compact spaces, Collect. Math., 51, 1, 59-81 (2000) · Zbl 0949.46004 [17] Kalenda, O. F.K., Valdivia compact spaces in topology and Banach space theory, Extracta Math., 15, 1, 1-85 (2000) · Zbl 0983.46021 [18] Kalenda, O. F.K., Valdivia compacta and biduals of Asplund spaces, (General Topology in Banach Spaces (2001), Nova Sci. Publ.: Nova Sci. Publ. Huntington, NY), 115-125 · Zbl 1036.46017 [19] Kalenda, O. F.K., \(M\)-bases in spaces of continuous functions on ordinals, Colloq. Math., 92, 2, 179-187 (2002) · Zbl 1029.46006 [20] Kalenda, O., Natural examples of Valdivia compact spaces, J. Math. Anal. Appl., 340, 1, 81-101 (2008) · Zbl 1138.46013 [21] Koszmider, P., Banach spaces of continuous functions with few operators, Math. Ann., 330, 1, 151-183 (2004) · Zbl 1064.46009 [22] Koszmider, P., Projections in weakly compactly generated Banach spaces and Chang’s conjecture, J. Appl. Anal., 11, 2, 187-205 (2005) · Zbl 1101.46013 [23] Kubiś, W., Compact spaces generated by retractions, Topology Appl., 153, 18, 3383-3396 (2006) · Zbl 1113.54011 [24] Kubiś, W., Linearly ordered compacta and Banach spaces with a projectional resolution of the identity, Topology Appl., 154, 3, 749-757 (2007) · Zbl 1119.46008 [25] Kubiś, W.; Michalewski, H., Small Valdivia compact spaces, Topology Appl., 153, 14, 2560-2573 (2006) · Zbl 1138.54024 [26] Kubiś, W.; Uspenskij, V., A compact group which is not Valdivia compact, Proc. Amer. Math. Soc., 133, 8, 2483-2487 (2005) · Zbl 1066.54027 [27] Kunen, K., Set Theory, Stud. Logic Found. Math., vol. 102 (1983), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam, An introduction to independence proofs, Reprint of the 1980 original · Zbl 0534.03026 [28] Lindenstrauss, J., On reflexive spaces having the metric approximation property, Israel J. Math., 3, 199-204 (1965) · Zbl 0148.11302 [29] Lindenstrauss, J., On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc., 72, 967-970 (1966) · Zbl 0156.36403 [30] Lindenstrauss, J.; Tzafriri, L., On the complemented subspaces problem, Israel J. Math., 9, 263-269 (1971) · Zbl 0211.16301 [31] Orihuela, J.; Schachermayer, W.; Valdivia, M., Every Radon-Nikodým Corson compact space is Eberlein compact, Studia Math., 98, 2, 157-174 (1991) · Zbl 0771.46015 [32] Orihuela, J.; Valdivia, M., Projective generators and resolutions of identity in Banach spaces, Congress on Functional Analysis. Congress on Functional Analysis, Madrid, 1988. Congress on Functional Analysis. Congress on Functional Analysis, Madrid, 1988, Rev. Mat. Univ. Complut. Madrid, 2, Suppl., 179-199 (1989) · Zbl 0717.46009 [33] Plebanek, G., A construction of a Banach space \(C(K)\) with few operators, Topology Appl., 143, 1-3, 217-239 (2004) · Zbl 1064.46011 [34] Plichko, A., Projection decompositions of the identity operator and Markushevich bases, Dokl. Akad. Nauk SSSR, 263, 3, 543-546 (1982) [35] Plichko, A., Projection decompositions, Markushevich bases and equivalent norms, Mat. Zametki, 34, 5, 719-726 (1983) · Zbl 0545.46010 [36] Plichko, A., Bases and complements in nonseparable Banach spaces. II, Sibirsk. Mat. Zh., 27, 2, 149-153 (1986), 222 · Zbl 0604.46016 [37] Plichko, A.; Yost, D., Complemented and uncomplemented subspaces of Banach spaces, III Congress on Banach Spaces. III Congress on Banach Spaces, Jarandilla de la Vera, 1998. III Congress on Banach Spaces. III Congress on Banach Spaces, Jarandilla de la Vera, 1998, Extracta Math., 15, 2, 335-371 (2000) · Zbl 0981.46022 [38] Sims, B.; Yost, D., Linear Hahn-Banach extension operators, Proc. Edinb. Math. Soc. (2), 32, 1, 53-57 (1989) · Zbl 0648.46004 [39] Valdivia, M., Resolutions of the identity in certain Banach spaces, Collect. Math., 39, 2, 127-140 (1988) · Zbl 0718.46006 [40] Valdivia, M., Simultaneous resolutions of the identity operator in normed spaces, Collect. Math., 42, 3, 265-284 (1991) · Zbl 0788.47024 [41] Vašák, L., On one generalization of weakly compactly generated Banach spaces, Studia Math., 70, 1, 11-19 (1981) · Zbl 0376.46012 [42] Zizler, V., Locally uniformly rotund renorming and decompositions of Banach spaces, Bull. Austral. Math. Soc., 29, 2, 259-265 (1984) · Zbl 0553.46014 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.