zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An iterative algorithm for solving fixed point problems, variational inequality problems and mixed equilibrium problems. (English) Zbl 1166.49013
Summary: We introduce an iterative algorithm for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of an infinite family of nonexpansive mappings and the set of solutions of some variational inequality. Furthermore, we prove that the proposed iterative algorithm converges strongly to a common element of the above three sets. Our results extend and improve the corresponding results of {\it L. C. Zeng} and {\it J. C. Yao} [A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math. 214, 186--201 (2008)], {\it S. Takahashi} and {\it W. Takahashi} [J. Math. Anal. Appl. 331, No. 1, 506--515 (2007; Zbl 1122.47056)] and many others.

MSC:
49J40Variational methods including variational inequalities
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
47H09Mappings defined by “shrinking” properties
49M05Numerical methods in calculus of variations based on necessary conditions
90C25Convex programming
90C99Mathematical programming
WorldCat.org
Full Text: DOI
References:
[1] Blum, E.; Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. student 63, 123-145 (1994) · Zbl 0888.49007
[2] L.C. Zeng, S.Y. Wu, J.C. Yao, Generalized KKM theorem with applications to generalized minimax inequalities and generalized equilibrium problems, Taiwanese J. Math., 2007 (in press) · Zbl 1121.49005
[3] Chadli, O.; Wong, N. C.; Yao, J. C.: Equilibrium problems with applications to eigenvalue problems. J. optim. Theory appl. 117, 245-266 (2003) · Zbl 1141.49306
[4] Chadli, O.; Schaible, S.; Yao, J. C.: Regularized equilibrium problems with an application to noncoercive hemivariational inequalities. J. optim. Theory appl. 121, 571-596 (2004) · Zbl 1107.91067
[5] Konnov, I. V.; Schaible, S.; Yao, J. C.: Combined relaxation method for mixed equilibrium problems. J. optim. Theory appl. 126, 309-322 (2005) · Zbl 1110.49028
[6] Combettes, P. L.; Hirstoaga, S. A.: Equilibrium programming in Hilbert spaces. J. nonlinear convex anal. 6, 117-136 (2005) · Zbl 1109.90079
[7] Flam, S. D.; Antipin, A. S.: Equilibrium programming using proximal-like algorithms. Math. program. 78, 29-41 (1997) · Zbl 0890.90150
[8] Takahashi, S.; Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. math. Anal. appl. 331, 506-515 (2007) · Zbl 1122.47056
[9] Chadli, O.; Konnov, I. V.; Yao, J. C.: Descent methods for equilibrium problems in a Banach space. Comput. math. Appl. 48, 609-616 (2004) · Zbl 1057.49009
[10] Ding, X. P.; Lin, Y. C.; Yao, J. C.: Predictor-corrector algorithms for solving generalized mixed implicit quasi-equilibrium problems. Appl. math. Mech. 27, 1157-1164 (2006) · Zbl 1199.49010
[11] Y. Yao, Y.C. Liou, J.C. Yao, Convergence theorem for equilibrium problems and fixed point problems, Fixed Point Theory (in press) · Zbl 1225.47120
[12] Plubtieng, S.; Punpaeng, R.: A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces. J. math. Anal. appl. 336, 455-469 (2007) · Zbl 1127.47053
[13] Tada, A.; Takahashi, W.: Strong convergence theorem for an equilibrium problem and a nonexpansive mapping. Nonlinear analysis and convex analysis, 609-617 (2007) · Zbl 1122.47055
[14] Yao, Y.; Liou, Y. C.; Yao, J. C.: Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings. Fixed point theory appl. 2007, 12 pages (2007) · Zbl 1153.54024
[15] Combettes, P. L.; Hirstoaga, S. A.: Equilibrium programming using proximal-like algorithms. Math. program. 78, 29-41 (1997)
[16] Zeng, L. C.; Yao, J. C.: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. J. comput. Appl. math. 214, 186-201 (2008) · Zbl 1143.65049
[17] Moudafi, A.: Viscosity approximation methods for fixed-point problems. J. math. Anal. appl. 241, 46-55 (2000) · Zbl 0957.47039
[18] Verma, R. U.: Generalized system for relaxed cocoercive variational inequalities and its projection methods. J. optim. Theory appl. 121, 203-210 (2004) · Zbl 1056.49017
[19] Cho, Y. J.; Kim, J. K.; Verma, R. U.: A class of nonlinear variational inequalities involving partially relaxed monotone mappings and general auxiliary problem principle. Dynam. systems appl. 11, 333-337 (2002) · Zbl 1014.49007
[20] Verma, R. U.: General convergence analysis for two-step projection methods and application to variational problems. Appl. math. Lett. 18, 1286-1292 (2005) · Zbl 1099.47054
[21] Chang, S. S.; Lee, H. W. Joseph; Chan, C. K.: Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces. Appl. math. Lett. 20, 329-334 (2007) · Zbl 1114.49008
[22] Iiduka, H.; Takahashi, W.: Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings. Nonlinear anal. 61, 341-350 (2005) · Zbl 1093.47058
[23] Rockafellar, R. T.: On the maximality of sums of nonlinear monotone operators. Trans. amer. Math. soc. 149, 75-88 (1970) · Zbl 0222.47017
[24] Suzuki, T.: Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J. math. Anal. appl. 305, 227-239 (2005) · Zbl 1068.47085
[25] Xu, H. K.: Viscosity approximation methods for nonexpansive mappings. J. math. Anal. appl. 298, 279-291 (2004) · Zbl 1061.47060
[26] Shimoji, K.; Takahashi, W.: Strong convergence to common fixed points of infinite nonexpansive mappings and applications. Taiwanese J. Math. 5, 387-404 (2001) · Zbl 0993.47037
[27] Bauschke, H. H.; Borwein, J. M.: On projection algorithms for solving convex feasibility problems. SIAM rev. 38, 367-426 (1996) · Zbl 0865.47039
[28] Combettes, P. L.: Hilbertian convex feasibility problem: convergence of projection methods. Appl. math. Optim. 35, 311-330 (1997) · Zbl 0872.90069
[29] Deutsch, F.; Yamada, I.: Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings. Numer. funct. Anal. optim. 19, 33-56 (1998) · Zbl 0913.47048
[30] Xu, H. K.: An iterative approach to quadratic optimization. J. optim. Theory appl. 116, 659-678 (2003) · Zbl 1043.90063