zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New applications of fractional variational principles. (English) Zbl 1166.58304
Summary: The fractional variational principles of constrained systems involving Riesz derivatives are discussed and one example is analyzed in detail. The fractional Euler-Lagrange equations of two fractional Lagrangians which differ by a fractional Riesz derivative are investigated.

MSC:
58E30Variational principles on infinite-dimensional spaces
26A33Fractional derivatives and integrals (real functions)
70H03Lagrange’s equations
70H05Hamilton’s equations
WorldCat.org
Full Text: DOI
References:
[1] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations. (2006) · Zbl 1092.45003
[2] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives--theory and applications. (1993) · Zbl 0818.26003
[3] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008
[4] Hilfer, R.: Applications of fractional calculus in physics. (2000) · Zbl 0998.26002
[5] Magin, R. L.: Fractional calculus in bioengineering. (2006)
[6] Momani, S.: Appl. math. Compt.. 182, 761 (2006)
[7] Mainardi, F.; Luchko, Yu.; Pagnini, G.: Frac. calc. Appl. analys.. 4, No. 2, 153 (2001)
[8] Scalas, E.; Gorenflo, R.; Mainardi, F.: Phys. rev. E. 69 (2004)
[9] Metzel, R.; Klafter, J.: J. phys. A.: math. Gen.. 37, No. 31, R161 (2004)
[10] Heymans, N.; Podlubny, I.: Rheol. acta. 45, 765 (2006)
[11] Hermann, R.: J. phys. G.: part. Phys.. 34, 607 (2007)
[12] Riewe, F.: Phys. rev. E. 53, 1890 (1996)
[13] Riewe, F.: Phys. rev. E. 55, 3581 (1997)
[14] Klimek, M.: Czech J. Phys.. 51, 1348 (2001)
[15] Klimek, M.: Czech J. Phys.. 52, 1247 (2002)
[16] Agrawal, O. P.: J. math. Anal. appl.. 272, 368 (2002)
[17] Agrawal, O. P.: J. phys. A.: math.gen.. 39, 10375 (2006)
[18] Agrawal, O. P.: J. vib. Contr:. 13, No. 9--10, 1217 (2007)
[19] Rabei, E. M.; Nawafleh, K. I.; Hijjawi, R. S.; Muslih, S. I.; Baleanu, D.: J. math. Anal. appl.. 327, 891 (2007)
[20] Baleanu, D.: Signal process.. 86, No. 10, 2632 (2006)
[21] Baleanu, D.; Muslih, S. I.: Czech J. Phys.. 55, No. 6, 633 (2005)
[22] Baleanu, D.; Muslih, S. I.: Physica scripta. 72, No. 2--3, 119 (2005)
[23] Muslih, S. I.; Baleanu, D.: J. math. Anal. appl.. 304, No. 3, 599 (2005)
[24] Baleanu, D.; Avkar, T.: Nuovo cimento B. 119, 73 (2004)
[25] Baleanu, D.; Agrawal, O. P.: Czech J. Phys.. 56, 1087 (2006)
[26] Agrawal, O. P.; Baleanu, D.: J. vib. Control. 13, No. 9--10, 1269 (2007) · Zbl 1182.70047
[27] Gitman, D. M.; Tyutin, I. V.: Quantization of fields with constraints. (1990) · Zbl 1113.81300
[28] Fahd, J.; Baleanu, D.: Rep. math. Phys.. 59, No. 1, 33 (2007)
[29] Agrawal, O. P.: J. phys. A.: math.gen.. 40, No. 24, 6287 (2007)
[30] Carathéodory, C.: Calculus of variations and partial differential equations of first order, part II, holden-day 1967. Phys. rep. 101, 3 (1983)
[31] Negri, L. J.; Da Silva Joseph, E. G.: Phys. rev. D. 27, 2227 (1986)
[32] Santilli, M.: Foundations of theoretical mechanics I, II. (1977) · Zbl 0354.49024