zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A class of two-step Steffensen type methods with fourth-order convergence. (English) Zbl 1166.65338
Summary: Based on Steffensen’s method, we derive a one-parameter class of fourth-order methods for solving nonlinear equations. In the proposed methods, an interpolating polynomial is used to get a better approximation to the derivative of the given function. Each member of the class requires three evaluations of the given function per iteration. Therefore, this class of methods has efficiency index which equals 1.587. {\it H. T. Kung} and {\it J. F. Traub} conjectured an iteration using $n$ evaluations of $f$ or its derivatives without memory is of convergence order at most $2n-1$ [J. Assoc. Comput. Mach. 21, 643--651 (1974; Zbl 0289.65023)]. The new class of fourth-order methods agrees with the conjecture of Kung-Traub for the case $n=3$. Numerical comparisons are made to show the performance of the presented methods.

65H05Single nonlinear equations (numerical methods)
Full Text: DOI
[1] Ortega, J. M.; Rheinbolt, W. C.: Iterative solution of nonlinear equations in several variables, (1970) · Zbl 0241.65046
[2] Argyros, I. K.: Convergence and application of Newton-type iterations, (2008) · Zbl 1153.65057
[3] Johnson, L. W.; Riess, R. D.: Numerical analysis, (1977) · Zbl 0412.65001
[4] Dehghan, M.; Hajarian, M.: A variant of Steffensen’s method with a better approximation to the derivative, Appl. math. Comput. (2008) · Zbl 1154.65023
[5] Jain, P.: Steffensen type methods for solving non-linear equations, Appl. math. Comput. 194, 527-533 (2007) · Zbl 1193.65063 · doi:10.1016/j.amc.2007.04.087
[6] Sharma, J. R.: A composite third order Newton -- Steffensen method for solving nonlinear equations, Appl. math. Comput. 169, 242-246 (2005) · Zbl 1084.65054 · doi:10.1016/j.amc.2004.10.040
[7] Amat, S.; Busquier, S.: Convergence and numerical analysis of a family of two-step Steffensen’s methods, Comput. math. Appl. 49, 13-22 (2005) · Zbl 1075.65080 · doi:10.1016/j.camwa.2005.01.002
[8] Amat, S.; Busquier, S.: A two-step Steffensen’s method under modified convergence conditions, J. math. Anal. appl. 324, 1084-1092 (2006) · Zbl 1103.65060 · doi:10.1016/j.jmaa.2005.12.078
[9] Amat, S.; Busquier, S.: On a Steffensen’s type method and its behavior for semismooth equations, Appl. math. Comput. 177, 819-823 (2006) · Zbl 1096.65047 · doi:10.1016/j.amc.2005.11.032
[10] Alarcn, V.; Amat, S.; Busquier, S.; Lpez, D. J.: A Steffensen’s type method in Banach spaces with applications on boundary-value problems, J. comput. Appl. math. 216, 243-250 (2008) · Zbl 1139.65040 · doi:10.1016/j.cam.2007.05.008
[11] Gautschi, W.: Numerical analysis: an introduction, (1997) · Zbl 0877.65001
[12] Bi, W.; Ren, H.; Wu, Q.: New family of seventh-order methods for nonlinear equations, Appl. math. Comput. 203, 408-412 (2008) · Zbl 1154.65323 · doi:10.1016/j.amc.2008.04.048
[13] Xu, L.; Wang, X.: Topics on methods and examples of mathematical analysis (in chinese), (1983)
[14] Kung, H. T.; Traub, J. F.: Optimal order of one-point and multipoint iteration, J. assoc. Comput. math. 21, 634-651 (1974) · Zbl 0289.65023 · doi:10.1145/321850.321860
[15] Weerakoon, S.; Fernando, T. G. I.: A variant of Newton’s method with accelerated third-order convergence, Appl. math. Lett. 13, 87-93 (2000) · Zbl 0973.65037 · doi:10.1016/S0893-9659(00)00100-2