×

Sobolev gradient approach for the time evolution related to energy minimization of Ginzburg-Landau functionals. (English) Zbl 1166.65348

Summary: The Sobolev gradient technique has been discussed previously in this journal as an efficient method for finding energy minima of certain Ginzburg-Landau type functionals [S. Sial, J. Neuberger, T. Lookman and A. Saxena, J. Comput. Phys. 189, No. 1, 88–97 (2003; Zbl 1097.49002)]. In this article, a Sobolev gradient method for the related time evolution is discussed.

MSC:

65K10 Numerical optimization and variational techniques
49M25 Discrete approximations in optimal control
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)

Citations:

Zbl 1097.49002
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Sial, S.; Neuberger, J.; Lookman, T.; Saxena, A., Energy minimization using Sobolev gradients: application to phase separation and ordering, J. comput. phys., 189, 88-97, (2003) · Zbl 1097.49002
[2] Neuberger, J.W., Sobolev gradients and differential equations, Springer lecture notes in mathematics, 1670, (1997), Springer-Verlag New York · Zbl 0870.47029
[3] Mahavier, W.T., A numerical method utilizing weighted Sobolev descent to solve singular differential equations, Nonlinear world, 4, 4, (1997) · Zbl 0908.65060
[4] C. Beasley, Finite Element Solution to Nonlinear Partial Differential Equations, Ph.D. Thesis, University of North Texas, Denton, TX, 1981.
[5] S. Sial, J. Neuberger, T. Lookman, A. Saxena, Energy minimization using Sobolev gradients finite element setting, in: Chaudhary, Bhatti (Eds.), Proceedings of the World Conference on 21st Century Mathematics, Lahore, Pakistan, March 2005. · Zbl 1097.49002
[6] Sial, S., Sobolev gradient algorithm for minimum energy states of s-wave superconductors: finite element setting, Supercond. sci. technol., 18, 675-677, (2005)
[7] Karatson, J.; Loczi, L., Sobolev gradient preconditioning for the electrostatic potential equation, Comput. math. appl., 50, 1093-1104, (2005) · Zbl 1098.65113
[8] Karatson, J.; Farago, I., Preconditioning operators and Sobolev gradients for nonlinear elliptic problems, Comput. math. appl., 50, 1077-1092, (2005) · Zbl 1118.65122
[9] Karatson, J., Constructive Sobolev gradient preconditioning for semilinear elliptic systems, Electron. J. differ. equations, 75, 1-26, (2004) · Zbl 1109.65308
[10] Garcia-Ripoll, J.; Konotop, V.; Malomed, B.; Perez-Garcia, V., A quasi-local gross – pitaevskii equation for attractive bose – einstein condensates, Math. comput. simulat., 62, 21-30, (2003) · Zbl 1034.35126
[11] Brown, B.; Jais, M.; Knowles, I., A variational approach to an elastic inverse problem, Inverse probl., 21, 1953-1973, (2005) · Zbl 1274.35407
[12] Knowles, I.; Yan, A., On the recovery of transport parameters in groundwater modelling, J. comput. appl. math., 171, 277-290, (2004) · Zbl 1044.86009
[13] Hohenberg, P.C.; Halperin, B.I., Theory of dynamic critical phenomena, Rev. mod. phys., 49, 435-479, (1977)
[14] Rogers, T.M.; Elder, K.E.; Desai, R.C., Numerical study of the late stages of spinodal decomposition, Phys. rev. B, 37, 9638-9649, (1988)
[15] Cahn, J.W.; Hilliard, J.E., Free energy of a nonuniform system. I: interfacial free energy, J. chem. phys., 28, 258, (1958)
[16] Courant, R.; Friedrichs, K.O.; Lewy, H., Uber die partiellen differenzengleichungen der mathematisches physik, Math. ann., 100, 32-74, (1928) · JFM 54.0486.01
[17] Adams, R.A., Sobolev spaces, (1975), Academic Press New York · Zbl 0186.19101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.