zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Particle trajectories beneath small-amplitude shallow water waves in constant vorticity flows. (English) Zbl 1166.76010
Summary: We investigate particle trajectories in a constant vorticity shallow water flow over a flat bed as periodic waves propagate on the water free surface. Within the framework of small-amplitude waves, we find the solutions of the nonlinear differential equations system which describes the particle motion in the considered case, and we describe the possible particle trajectories. Depending on the relation between the initial data and the constant vorticity, some particle trajectories are undulating curves to the right, or to the left, others are loops with forward drift, or with backward drift, others can follow some peculiar shapes.

76B15Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76B47Vortex flows
Full Text: DOI arXiv
[1] Debnath, L.: Nonlinear water waves. (1994) · Zbl 0793.76001
[2] Johnson, R. S.: A modern introduction to the mathematical theory of water waves. (1997) · Zbl 0892.76001
[3] Kenyon, K. E.: Shallow water gravity waves: A note on the particle orbits. J. oceanography 52, 353-357 (1996)
[4] Lamb, H.: Hydrodynamics. (1953) · Zbl 0828.01012
[5] Lighthill, J.: Waves in fluids. (2001) · Zbl 0976.76001
[6] Sommerfeld, A.: Mechanics of deformable bodies. (1950) · Zbl 0038.37107
[7] Stoker, J. J.: Water waves. The mathematical theory with applications. (1957) · Zbl 0078.40805
[8] Constantin, A.; Villari, G.: Particle trajectories in linear water waves. J. math. Fluid mech. 10, 1-18 (2008) · Zbl 1162.76316
[9] Constantin, A.; Ehrnström, M.; Villari, G.: Particle trajectories in linear deep-water waves. Nonlinear anal. RWA 9, 1336-1344 (2008) · Zbl 1154.35429
[10] Stokes, G. G.: On the theory of oscillatory waves. Trans. camb. Phil. soc. 8, 441-455 (1847)
[11] Ionescu-Kruse, D.: Particle trajectories in linearized irrotational shallow water flows. J. nonlinear math. Phys. 15, 13-27 (2008)
[12] Ehrnström, M.: On the streamlines and particle paths of gravitational water waves. Nonlinearity 21, 1141-1154 (2008) · Zbl 1143.35350
[13] Ehrnström, M.; Villari, G.: Linear water waves with vorticity: rotational features and particle paths. J. differential equations 244, 1888-1909 (2008) · Zbl 1148.35068
[14] Constantin, A.: The trajectories of particles in Stokes waves. Invent. math. 166, 523-535 (2006) · Zbl 1108.76013
[15] Henry, D.: The trajectories of particles in deep-water Stokes waves. Int. math. Res. not., 13 (2006) · Zbl 1157.35449
[16] A. Constantin, W. Strauss, Pressure and trajectories beneath a Stokes wave, preprint, 2008
[17] Constantin, A.; Escher, J.: Particle trajectories in solitary water waves. Bull. amer. Math. soc. 44, 423-431 (2007) · Zbl 1126.76012
[18] Gerstner, F.: Theorie der wellen samt einer daraus abgeleiteten theorie der deichprofile. Ann. phys. 2, 412-445 (1809)
[19] Constantin, A.: On the deep water wave motion. J. phys. A 34, 1405-1417 (2001) · Zbl 0982.76015
[20] Constantin, A.: Edge waves along a sloping beach. J. phys. A 34, 9723-9731 (2001) · Zbl 1005.76009
[21] Crapper, G. D.: An exact solution for progressive capillary waves of arbitrary amplitude. J. fluid mech. 2, 532-540 (1957) · Zbl 0079.19304
[22] Kinnersley, W.: Exact large amplitude capillary waves on sheets of fluids. J. fluid mech. 77, 229-241 (1976) · Zbl 0359.76017
[23] Coutand, D.; Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. amer. Math. soc. 20, 829-930 (2007) · Zbl 1123.35038
[24] Amick, C. J.; Fraenkel, L. E.; Toland, J. F.: On the Stokes conjecture for the wave of extreme form. Acta math. 148, 193-214 (1982) · Zbl 0495.76021
[25] Toland, J. F.: Stokes waves. Topol. methods nonlinear anal. 7, 1-48 (1996) · Zbl 0897.35067
[26] Constantin, A.; Strauss, W.: Exact steady periodic water waves with vorticity. Comm. pure appl. Math. 57, 481-527 (2004) · Zbl 1038.76011
[27] Constantin, A.; Strauss, W.: Stability properties of steady water waves with vorticity. Comm. pure appl. Math. 60, 911-950 (2007) · Zbl 1125.35081
[28] Kamke, E.: Differentialgleichungen, lösungsmethoden und lösungen, vol. I. (1967) · Zbl 0026.31801
[29] V. Smirnov, Cours de Mathématiques supérieures, Tome III, deuxième partie, Mir, Moscou, 1972
[30] Byrd, P. F.; Friedman, M. D.: Handbook of elliptic integrals for engineers and scientists. (1971) · Zbl 0213.16602