zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two-level Galerkin-Lagrange multipliers method for the stationary Navier-Stokes equations. (English) Zbl 1166.76032
Summary: We combine the Galerkin-Lagrange multiplier (GLM) method with the two-level method to solve stationary Navier-Stokes equations in order to avoid the time-consuming process and the construction of zero-divergence elements. Different quadrilateral partitions are used for approximating velocity and pressure. Then some error estimates are obtained, and some numerical results of the GLM method and two-level GLM method are given. The results show that the two-level method based on the GLM method is more efficient than the GLM method under the convergence rate of the same order.

MSC:
76M10Finite element methods (fluid mechanics)
76D05Navier-Stokes equations (fluid dynamics)
65N15Error bounds (BVP of PDE)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
WorldCat.org
Full Text: DOI
References:
[1] Babuška, I.: A.k.azizthe mathematical foundation of the finite element method with applications to partial differential equations, The mathematical foundation of the finite element method with applications to partial differential equations (1972)
[2] Richard, S. Falk: An analysis of the finite element method using Lagrange multipliers for the stationary Stokes equations, Math. comput. 30, 241-249 (1976) · Zbl 0351.65028 · doi:10.2307/2005965
[3] Karakashian, Ohannes A.: On a Galerkin--Lagrange multiplier method for the Navier--Stokes equation, SIAM J. Numer. anal. 19, 909-923 (1982) · Zbl 0496.76032 · doi:10.1137/0719066
[4] Xu, J.: A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. comput. 15, 231-237 (1994) · Zbl 0795.65077 · doi:10.1137/0915016
[5] Xu, J.: Two-grid finite element discretizations for nonlinear pdes, SIAM J. Numer. anal. 33, 1759-1777 (1996) · Zbl 0860.65119
[6] Layton, W.: A two-level discretization method for the Navier--Stokes equations, Comput. math. Appl. 26, 33-38 (1993) · Zbl 0773.76042 · doi:10.1016/0898-1221(93)90318-P
[7] Layton, W.; Lenferink, W.: Two-level Picard and modified Picard methods for the Navier--Stokes equations, Appl. math. Comput. 69, 263-274 (1995) · Zbl 0828.76017 · doi:10.1016/0096-3003(94)00134-P
[8] Layton, W.; Tobiska, L.: A two-level method with backtracking for the Navier--Stokes equations, SIAM J. Numer. anal. 35, 2035-2054 (1998) · Zbl 0913.76050 · doi:10.1137/S003614299630230X
[9] Girault, V.; Lions, J. L.: Two-grid finite element scheme for the transient Navier--Stokes problem, Math. model. Numer. anal. 35, 945-980 (2001) · Zbl 1032.76032 · doi:10.1051/m2an:2001145 · numdam:M2AN_2001__35_5_945_0
[10] He, Yinnian; Li, Jian; Yang, Xiaozhong: Two-level penalized finite element methods for the stationary Navier--Stokes equations, Internat. J. Inform. syst. Sci. 2, 1-16 (2006) · Zbl 1099.65110
[11] He, Yinnian; Li, Kaitai: Two-level stabilized finite element methods for the steady Navier--Stokes problem, Computing 74, 337-351 (2005) · Zbl 1099.65111 · doi:10.1007/s00607-004-0118-7
[12] Olshanskii, Maxim A.: Two-level method and some a priori estimates in unsteady Navier--Stokes calculations, J. comput. Appl. math. 104, 173-191 (1999) · Zbl 0940.76079 · doi:10.1016/S0377-0427(99)00056-4
[13] He, Yinnian: Two-level method based on finite element and Crank--Nicolson extrapolation for the time-dependent Navier--Stokes equations, SIAM J. Numer. anal. 41, 1263-1285 (2003) · Zbl 1130.76365 · doi:10.1137/S0036142901385659
[14] He, Yinnian: A two-level finite element Galerkin method for the nonstationary Navier--Stokes equations I: Spatial discretization, J. comput. Math. 22, 21-32 (2004) · Zbl 1137.76412 · http://www.global-sci.org/jcm/volumes/v22n1/pdf/221-021.pdf
[15] He, Yinnian; Miao, Huanling; Ren, Chunfeng: A two-level finite element Galerkin method for the nonstationary Navier--Stokes equations II: Time discretization, J. comput. Math. 22, 33-54 (2004) · Zbl 1137.76413 · http://www.global-sci.org/jcm/volumes/v22n1/pdf/221-033.pdf
[16] He, Yinnian; Liu, K. M.: Multi-level spectral Galerkin method for the Navier--Stokes equations I: Time discretization, Adv. comput. Math. 25, 403-433 (2006) · Zbl 05065041
[17] He, Yinnian; Liu, K. M.; Sun, W. W.: Multi-level spectral Galerkin method for the Navier--Stokes equations I: Spatial discretization, Numer. math. 101, 501-522 (2005) · Zbl 1096.65099 · doi:10.1007/s00211-005-0632-3
[18] He, Yinnian; Liu, K. M.: A multi-level finite element method in space-time for the Navier--Stokes equations, Numer. methods partial differential equations 21, 1052-1078 (2005) · Zbl 1081.76044 · doi:10.1002/num.20077
[19] Heywood, J. G.; Rannacher, R.: Finite element approximation of the nonstationary Navier--Stokes problem I: Regularity of solutions and second-order error estimate for spatial discretization, SIAM J. Numer. anal. 19, 275-311 (1982) · Zbl 0487.76035 · doi:10.1137/0719018
[20] Girault, V.; Raviart, P. A.: Finite element method for Navier--Stokes equations: theory and algorithms, (1987) · Zbl 0585.65077
[21] He, Yinnian; Miao, Huanling; Mattheij, R. M. M.; Chen, Z.: Numerical analysis of a modified finite element nonlinear Galerkin method, Numer. math. 97, 725-756 (2004) · Zbl 1059.65088 · doi:10.1007/s00211-003-0516-3
[22] Johnson, C.: On computability and error control in CFD, Internat. J. Numer. methods fluids 20, 777-788 (1995) · Zbl 0836.76079 · doi:10.1002/fld.1650200806