Long, Xiaohan; Yuan, Yirang Multistep characteristic method for incompressible flow in porous media. (English) Zbl 1166.76038 Appl. Math. Comput. 214, No. 1, 259-270 (2009). Summary: We present a multistep difference scheme for the problem of miscible displacement of incompressible fluid flow in porous media. The discretization involves a three-level time scheme based on the characteristic method, and a five-point finite difference scheme for space discretization. We prove that the convergence is of order \(O(h^{2}+(\Delta t)^{2})\), which is in contrast to the convergence of order \(O(h+\Delta t)\) proved for a singlestep characteristic with the same space discretization. Numerical experiments demonstrate the stability and second-order convergence of the scheme. Cited in 2 Documents MSC: 76M20 Finite difference methods applied to problems in fluid mechanics 76S05 Flows in porous media; filtration; seepage 65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs Keywords:five-point finite difference scheme; second-order convergence PDF BibTeX XML Cite \textit{X. Long} and \textit{Y. Yuan}, Appl. Math. Comput. 214, No. 1, 259--270 (2009; Zbl 1166.76038) Full Text: DOI References: [1] Bermúdez, A.; Nogueiras, M. R.; Vázquez, C., Numerical analysis of convection-diffusion-reaction problems with higher order characteristics/finite elements. Part I: Time discretization, SIAM J. Numer. Anal., 44, 1829-1853 (2006) · Zbl 1126.65080 [2] Bermúdez, A.; Nogueiras, M. R.; Vázquez, C., Numerical analysis of convection-diffusion-reaction problems with higher order characteristics/finite elements. Part II: Fully discretized scheme and quadrature formulas, SIAM J. Numer. Anal., 44, 1854-1876 (2006) · Zbl 1126.65081 [3] Bermejo, R., On the equivalence of semi-Lagrange schemes and particle-in-cell finite element methods, Mon. Weather Rev., 118, 979-987 (1990) [4] Boukir, K.; Maday, Y.; Métivet, B., A high order characteristics method for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 116, 211-218 (1994) · Zbl 0824.76060 [5] Boukir, K.; Maday, Y.; Métivet, B.; Razafindrakoto, E., A high-order characteristics/finite element method for the incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 25, 1421-1454 (1997) · Zbl 0904.76040 [6] Bramble, J. H., A second order finite difference analog of the first biharmonic boundary value problem, Numer. Math., 4, 236-249 (1966) · Zbl 0154.41105 [7] Celia, M. A.; Russell, T. F.; Herrera, I.; Ewing, R. E., An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Adv. Water Res., 13, 187-206 (1990) [8] Douglas, J.; Ewing, R. E.; Wheeler, M. F., The approximation of the pressure by a mixed method in the simulation of immiscible displacement, RAIRO Anal. Numer., 17, 17-33 (1983) · Zbl 0516.76094 [9] Douglas, J.; Russell, T. F., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19, 871-885 (1982) · Zbl 0492.65051 [10] Douglas, J., Finite difference methods for two-phase incompressible flow in porous media, SIAM J. Numer. Anal., 20, 681-696 (1983) · Zbl 0519.76107 [12] Ewing, R. E.; Russell, T. F.; Wheeler, M. F., Convergence analysis of an approximation of immiscible displacement in porous media by mixed finite elements and a modified method of characteristics, Methods Appl. Mech. Eng., 47, 73-92 (1984) · Zbl 0545.76131 [13] Ewing, R. E.; Russell, T. F.; Wheeler, M. F., Simulation of immiscible displacement using mixed methods and a modified method of characteristics, SPE, 12241, 71-81 (1983) [15] Fourestey, G.; Piperno, S., A second-order time-accurate ALE Lagrange-Galerkin method applied to wind engineering and control of bridge profiles, Comput. Methods Appl. Mech. Eng., 193, 4117-4137 (2004) · Zbl 1175.76101 [16] Hairer, E.; Wanner, H., Solving Ordinary Differential Equations I - Nonstiff Problems (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0638.65058 [17] Süli, E., Convergence and nonlinear stability of the Lagrange-Galerkin method for Navier-Stokes Equations, Numer. Math., 53, 459-483 (1988) · Zbl 0637.76024 [18] Pironneau, O., On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numer. Math., 38, 309-332 (1982) · Zbl 0505.76100 [19] Rui, H.; Tabata, M., A second order characteristic finite element scheme for convection-diffusion problems, Numer. Math., 92, 161-177 (2002) · Zbl 1005.65114 [20] Russell, T. F., Time stepping along characteristics with incomplete iteration for a Galerkin approximation of immiscible displacement in porous media, SIAM J. Numer. Anal., 22, 970-1013 (1985) · Zbl 0594.76087 [21] Wang, H.; Dahle, H. K.; Ewing, R. E.; Espedal, M. S.; Sharpley, R. C.; Man, S., An ELLAM scheme for advection-diffusion equations in two dimensions, SIAM J. Sci. Comput., 20, 2160-2194 (1999) · Zbl 0939.65109 [22] Wang, H.; Liang, D.; Ewing, R. E.; Lyons, S. L.; Qin, G., An improved numerical simulator for different types of flows in porous media, Numer. Methods Part. Diff. Eq., 19, 343-362 (2003) · Zbl 1079.76044 [23] Xiu, X.; Karniadakis, G. E., A semi-Lagrangian high-order method for Navier-Stokes equations, J. Comput. Phys., 172, 658-684 (2001) · Zbl 1028.76026 [24] Yirang, Yuan, The characteristic-mixed finite element method for enhanced oil recovery simulation and optimal order \(L^2\) error estimate, Chinese Sci. Bull., 38, 1066-1070 (1993) · Zbl 0806.76048 [25] Zlámal, M., Finite element methods for nonlinear parabolic equations, RAIRO Numer. Anal., 11, 93-107 (1977) · Zbl 0385.65049 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.