zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
HIV dynamics: analysis and robust multirate MPC-based treatment schedules. (English) Zbl 1166.92025
Summary: Analysis and control of human immunodeficiency virus (HIV) infections have attracted the interests of mathematicians and control engineers during the recent years. Several mathematical models exist and adequately explain the interactions of the HIV infection and the immune system up to the stage of clinical latency, as well as viral suppression and immune system recovery after treatment therapy. However, none of these models can completely exhibit all that is observed clinically and account the full course of infection. Besides model inaccuracies that HIV models suffer from, some disturbances/uncertainties from different sources may arise in the modelling. We study the basic properties of a 6-dimensional HIV model that describes the interactions of HIV with two target cells, $CD4^{+}$ T cells and macrophages. The disturbances are modelled in the HIV model as additive bounded disturbances. Highly Active AntiRetroviral Therapy (HAART) is used. The control input is defined to be dependent on the drug dose and drug efficiency. We developed treatment schedules for HIV infected patients by using a robust multirate Model Predictive Control (MPC)-based method. The MPC is constructed on the basis of an approximate discrete-time model of the nominal model. We established a set of conditions, which guarantee that the multirate MPC practically stabilizes the exact discrete-time model with disturbances. The proposed method is applied to the stabilization of the uninfected steady state of the HIV model. The results of simulations show that, after initiation of HAART with a strong dosage, the viral load drops quickly and can be kept under a suitable level with mild dosage of HAART. Moreover, the immune system is recovered with some fluctuations due to the presence of disturbances.

MSC:
92C50Medical applications of mathematical biology
93C95Applications of control theory
34D23Global stability of ODE
34D05Asymptotic stability of ODE
93B25Algebraic theory of control systems
37N25Dynamical systems in biology
WorldCat.org
Full Text: DOI
References:
[1] Adams, B. M.; Banks, H. T.; Davidian, M.; Kwon, H. -D.; Tran, H. T.; Wynne, S. N.; Rosenberg, E. S.: HIV dynamics: modeling, data analysis, and optimal treatment protocols, J. comput. Appl. math. 184, 10-49 (2005) · Zbl 1075.92030 · doi:10.1016/j.cam.2005.02.004
[2] Allgöwer, F.; Badgwell, T. A.; Qin, J. S.; Rawlings, J. B.; Wright, S. J.: Nonlinear predictive control and moving horizon estimation-an introductory overview, Advances in control, 391-449 (1999)
[3] Alvarez-Ramirez, J.; Meraz, M.; Velasco-Hernandez, J. X.: Feedback control of the chemotherapy of HIV, Int. J. Bifur. chaos 10, No. 9, 2207-2219 (2000) · Zbl 0956.92021 · doi:10.1142/S0218127400001377
[4] Banks, H. T.; Kwon, H. -D.; Toivanen, J. A.; Tran, H. T.: A state-dependent Riccati equation-based estimator approach for HIV feedback control, Optimal control appl. Methods 27, 93-121 (2006)
[5] Brandt, M. E.; Chen, G.: Feedback control of a biodynamical model of HIV-1, IEEE trans. Biom. engrg. 48, 754-759 (2001)
[6] Caetano, M. A. L.; Yoneyama, T.: Short and long period optimization of drug doses in the treatment of AIDS, An. acad. Brasil. cienc. 74, 589-597 (2002) · Zbl 1006.92019 · doi:10.1590/S0001-37652002000300002
[7] Callaway, D. S.; Perelson, A. S.: HIV-1 infection and low steady state viral loads, Bull. math. Biol. 64, 29-64 (2002)
[8] Chen, H.; Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability, Automatica 34, No. 10, 1205-1217 (1998) · Zbl 0947.93013 · doi:10.1016/S0005-1098(98)00073-9
[9] Culshaw, R. V.; Ruan, S.; Spiteri, R. J.: Optimal HIV treatment by maximising immune response, J. math. Biol. 48, No. 5, 545-562 (2004) · Zbl 1057.92035 · doi:10.1007/s00285-003-0245-3
[10] Elaiw, A. M.: Multirate sampling and input-to-state stable receding horizon control for nonlinear sampled-data systems, Nonlinear anal. 67, 1637-1648 (2007) · Zbl 1113.93055 · doi:10.1016/j.na.2006.08.005
[11] Elaiw, A. M.: Receding horizon control method applied to antiviral treatment of AIDS, Miskolc math. Notes 5, 173-186 (2004) · Zbl 1075.93525
[12] Elaiw, A. M.; Kiss, K.; Caetano, M. A. L.: Stabilization of HIV/AIDS model by receding horizon control, J. appl. Math. comput. 18, No. 1 -- 2, 95-112 (2005) · Zbl 1071.92034 · doi:10.1007/BF02936558
[13] Fister, K. R.; Lenhart, S.; Mcnally, J. S.: Optimizing chemotherapy in an HIV model, Electron. J. Differential equations 1998, 1-12 (1998) · Zbl 1068.92503 · emis:journals/EJDE/Volumes/1998/32/abstr.html
[14] Fontes, F. A. C.C.: A general framework to design stabilizing nonlinear model predictive controllers, Systems control lett. 42, No. 2, 127-143 (2000) · Zbl 0985.93023 · doi:10.1016/S0167-6911(00)00084-0
[15] Gyurkovics, É.: Receding horizon control via bolza-type optimization, Systems control lett. 35, No. 3, 195-200 (1998) · Zbl 0909.93064 · doi:10.1016/S0167-6911(98)00051-6
[16] Gyurkovics, É.; Elaiw, A. M.: Stabilization of sampled-data nonlinear systems by receding horizon control via discrete-time approximations, Automatica 40, No. 12, 2017-2028 (2004) · Zbl 1077.93044 · doi:10.1016/j.automatica.2004.06.019
[17] Gyurkovics, E.; Elaiw, A. M.: A stabilizing sampled-data $\ell $-step receding horizon control with application to a HIV/AIDS model, Differential equations dynam. Systems 14, No. 3 -- 4, 323-352 (2006) · Zbl 1124.93046
[18] Gyurkovics, E.; Elaiw, A. M.: Conditions for MPC based stabilization of sampled-data nonlinear systems via discrete-time approximations, Lecture notes in control and inform. Sci. 358, 35-48 (2007) · Zbl 1223.93103 · doi:10.1007/978-3-540-72699-9_3
[19] Jeffery, A. M.; Xia, X.; Craig, I. K.: Structured treatment interruptions: A control mathematical approach to protocol design, J. process. Control 17, 571-594 (2007)
[20] A.M. Jeffery, A control theoretic approach to HIV/AIDS drug dosage design and timing the initiation of therapy, PhD thesis, department of electrical, electronic and computer engineering, University of Pretoria, 2006
[21] Jeffrey, A. M.; Xia, X.; Craig, I. K.: When to initiate HIV therapy: A control theoretic approach, IEEE trans. Biom. engrg. 50, No. 11, 1213-1220 (2003)
[22] Jeffrey, A. M.; Xia, X.: Identifiability of HIV/AIDS models, Deterministic and stochastic models of AIDS epidemics and HIV infections with intervention, 255-286 (2005) · Zbl 1268.92092
[23] Joshi, H. R.: Optimal control of an HIV immunology model, Optimal control appl. Methods 23, 199-213 (2002) · Zbl 1072.92509 · doi:10.1002/oca.710
[24] Kirschner, D.; Lenhart, S.; Serbin, S.: Optimal control of the chemotherapy of HIV, J. math. Biol. 35, 775-792 (1997) · Zbl 0876.92016 · doi:10.1007/s002850050076
[25] Ko, J. H.; Kim, W. H.; Chung, C. C.: Optimized structured treatment interruption for HIV therapy and its performance analysis on controllability, IEEE trans. Biom. engrg. 53, No. 3, 380-386 (2006)
[26] Korobeinikov, A.: Global properties of basic virus dynamics models, Bull. math. Biol. 66, 879-883 (2004)
[27] Kwon, H. -D.: Optimal treatment strategies derived from a HIV model with drug-resistant mutants, Appl. math. Comput. 188, 1193-1204 (2007) · Zbl 1113.92035 · doi:10.1016/j.amc.2006.10.071
[28] Ledzewicz, U.; Schättler, H.: On optimal controls for a general mathematical model for chemotherapy of HIV, , 3454-3459 (2003)
[29] Mayne, D. Q.; Rawlings, J. B.; Rao, C. V.; Scokaert, P. O. M.: Constrained model predictive control: stability and optimality, Automatica 36, No. 6, 789-814 (2000) · Zbl 0949.93003 · doi:10.1016/S0005-1098(99)00214-9
[30] Nešić, D.; Teel, A. R.: A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models, IEEE trans. Automat. control 49, No. 7, 1103-1122 (2004)
[31] Nešić, D.; Teel, A. R.; Kokotović, P. V.: Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximation, Systems control lett. 38, No. 4 -- 5, 259-270 (1999) · Zbl 0985.93034 · doi:10.1016/S0167-6911(99)00073-0
[32] Nešić, D.; Laila, D. S.: A note on input-to-state stabilization of sampled-data nonlinear systems, IEEE trans. Automat. control 47, No. 7, 1153-1158 (2002)
[33] Perelson, A. S.; Kirschner, D.; De Boer, R.: Dynamic of HIV infection of CD4+ T cells, Math. biosci. 114, No. 1, 81-125 (1993) · Zbl 0796.92016 · doi:10.1016/0025-5564(93)90043-A
[34] Perelson, A. S.; Essunger, P.; Cao, Y.; Vesanen, M.; Hurley, A.; Saksela, K.; Markowitz, M.; Ho, D. D.: Decay characteristics of HIV-1-infected compartments during combination therapy, Nature 387, 188-191 (1997)
[35] Perelson, A. S.; Nelson, P. W.: Mathematical analysis of HIV-1 dynamics in vivo, SIAM rev. 41, No. 1, 3-44 (1999) · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[36] Ramratnam, B.; Bonhoeffer, S.; Binley, J.; Hurleyel, A.: Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis, Lancet 354, No. 20, 1782-1785 (1999)
[37] Shim, H.; Han, S. J.; Jeong, I. S.; Chung, C. C.; Nam, S. W.; Seo, J. H.: Optimal scheduling of drug treatment for HIV infection: continuous dose control and receding horizon control, Internat. J. Control, autom. And systems 1, 401-407 (2003)
[38] Adams, B. M.; Banks, H. T.; Kwon, H. -D.; Tran, H. T.: Dynamic multidrug therapies for HIV: optimal and STI control approaches, Math. biosci. Eng. 1, 223-241 (2004) · Zbl 1060.92034 · doi:10.3934/mbe.2004.1.223
[39] Zurakowski, R.; Teel, A. R.: A model predictive control based scheduling method for HIV therapy, J. theoret. Biol. 238, 368-382 (2006)
[40] Xia, X.: Estimation of HIV/AIDS parameters, Automatica 39, 1983-1988 (2003) · Zbl 1046.93013
[41] Xia, X.; Moog, C. H.: Identifiability of nonlinear systems with application to HIV/AIDS models, IEEE trans. Automat. control 48, 330-336 (2003)
[42] Xia, X.: Modelling of HIV infection: vaccine readiness, drug effectiveness and therapeutical failures, J. process. Control 17, 253-260 (2007)