zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive backstepping control of uncertain systems with unknown input time-delay. (English) Zbl 1166.93339
Summary: We establish the robustness of adaptive controllers designed using the standard backstepping technique with respect to unmodeled dynamics involving unknown input time delay. While noting that some results on robust stabilization of non-minimum phase systems using the backstepping technique are available, we realize that the standard adaptive backstepping technique has only been shown applicable to unknown minimum phase systems. Another significance of our result is to enable the class of systems stablizable by adaptive backstepping controllers to cross the boundary of minimum phase systems, since systems with input time delay belong to non-minimum phase systems. Moreover, the $L_{2}$ and $L_\infty $ norms of the system output are also established as functions of design parameters. This implies that the transient system performance can be adjusted by choosing suitable design parameters.

MSC:
93C40Adaptive control systems
93C15Control systems governed by ODE
93B35Sensitivity (robustness) of control systems
WorldCat.org
Full Text: DOI
References:
[1] Basin, M.; Sanchez, E.; Martinez-Zuniga, R.: Optimal linear filtering for systems with multiple state and observation delays, International journal of innovative computing, information and control 3, 1309-1320 (2007)
[2] Chou, C. H.; Cheng, C. C.: A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems, Institute electrical and electronic engineering transactions on automatic control 48, 1213-1217 (2003)
[3] Garcia, P.; Albertos, P.; Hagglund, T.: Control of unstable non-minimum-phase delayed systems, Journal of process control 16, 1099-1111 (2006)
[4] Ge, S. S.; Hang, F.; Lee, T. H.: Adaptive neural network control of nonlinear systems with unknown time delays, Institute electrical and electronic engineering transactions on automatic control 48, 4524-4529 (2003)
[5] Ge, S. S.; Tee, K. P.: Approximation-based control of nonlinear MIMO time-delay systems, Automatica 43, 31-43 (2007) · Zbl 1137.93042 · doi:10.1016/j.automatica.2006.08.003
[6] Hua, C.; Guan, X.; Shi, P.: Robust backstepping control for a class of time delayed systems, Institute electrical and electronic engineering transactions on automatic control 50, 894-899 (2005)
[7] Hua, C.; Guan, X.; Shi, P.: Robust output feedback tracking control for time-delay nonlinear systems using neural network, Institute electrical and electronic engineering transactions on neural networks 18, 495-505 (2007)
[8] Jankovic, M.: Control Lyapunov-razumikhin functions and robust stabilization of time delay systems, Institute electrical and electronic engineering transactions on automatic control 46, 1048-1060 (2001) · Zbl 1023.93056 · doi:10.1109/9.935057
[9] Jiao, X.; Shen, T.: Adaptive feedback control of nonlinear time-delay systems the lasalle-razumikhin-based approach, Institute electrical and electronic engineering transactions on automatic control 50, 1909-1913 (2005)
[10] Karafyllis, I.: Finite-time global stabilization by means of time-varying distributed delay feedback, SIAM journal on control and optimization 45, 320-342 (2006) · Zbl 1132.93036
[11] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P. V.: Nonlinear and adaptive control design, (1995)
[12] Luo, N.; Dela, S. M.; Rodellar, J.: Robust stabilization of a class of uncertain time delay systems in sliding mode, International journal of robust and nonlinear control 7, 59-74 (1997) · Zbl 0878.93055 · doi:10.1002/(SICI)1099-1239(199701)7:1<59::AID-RNC205>3.0.CO;2-X
[13] Mahmoud, M. S.; Shi, Y.; Nounou, H. N.: Resilient observer-based control of uncertain time-delay systems, International journal of innovative computing, information and control 3, 407-418 (2007)
[14] Mazenc, F., &amp; Bliman, P. A. (2003). Backstepping design for time-delay nonlinear systems. In 42nd IEEE international conference on decision and control(pp. 4551-4556)
[15] Middleton, R.; Goodwin, G. C.; Hill, D. J.; Mayne, D. Q.: Design issues in adaptive control, Institute electrical and electronic engineering transactions on automatic control 33, 50-58 (1988) · Zbl 0637.93040 · doi:10.1109/9.360
[16] Rohrs, C. E., Valavani, L., Athans, M., &amp; Stein, G. (1982). Robustness of adaptive control algorithms in the presence of unmodelled dynamics. In Proceedings of 21st IEEE conference on decision and control · Zbl 0571.93042
[17] Shyu, K. K.; Liu, W. J.; Hsu, K. C.: Design of large-scale time-delayed systems with dead-zone input via variable structure control, Automatica 41, 1239-1246 (2005) · Zbl 1080.93003 · doi:10.1016/j.automatica.2005.03.004
[18] Wen, C.: Decentralized adaptive regulation, Institute electrical and electronic engineering transactions on automatic control 39, 2163-2166 (1994) · Zbl 0925.93460
[19] Wen, C.; Hill, D. J.: Global boundedness of discrete-time adaptive control just using estimator projection, Automatica 28, 1143-1157 (1992) · Zbl 0763.93055 · doi:10.1016/0005-1098(92)90056-L
[20] Wen, C.; Soh, Y. C.; Zhang, Y.: Adaptive control of linear systems with unknown time delay, Adaptive control of nonsmooth dynamic systems (2000)
[21] Wen, C.; Zhang, Y.; Soh, Y. C.: Robustness of an adaptive backstepping controller without modification, Systems & control letters 36, 87-100 (1999) · Zbl 0924.93042 · doi:10.1016/S0167-6911(98)00081-4
[22] Wen, C.; Zhou, J.; Wang, W.: Decentralized adaptive backstepping stabilization of interconnected systems with dynamic input and output interactions, Automatica 45, 55-67 (2009) · Zbl 1154.93426 · doi:10.1016/j.automatica.2008.06.018
[23] Wu, W.: Robust linearising controllers for nonlinear time-delay systems, IEE Proceedings-control theory and applications 146, 91-97 (1999)
[24] Wu, H.: Decentralized adaptive robust control for a class of large-scale systems including delayed state perturbations in the interconnections, Institute electrical and electronic engineering transactions on automatic control 47, 1745-1751 (2002)
[25] Wu, S., Deng, F., &amp; Xiang, S. (2006). Backstepping controller design for large-scale stochastic systems with time delays. In Proceedings of the world congress on intelligent control and automation, WCICA (pp. 1181-1185)
[26] Zhang, Y.; Ioannou, P. A.: Robusteness and performance of a modified adaptive backstepping controller, International journal of adaptive control and signal processing 12, 247-265 (1998) · Zbl 0916.93066 · doi:10.1002/(SICI)1099-1115(199805)12:3<247::AID-ACS469>3.0.CO;2-7
[27] Zhang, Y.; Wen, C.; Soh, Y. C.: Adaptive backstepping control design for systems with unknown high-frequency gain, Institute electrical and electronic engineering transactions on automatic control 45, 2350-2354 (2000) · Zbl 0990.93061 · doi:10.1109/9.895572
[28] Zhou, J.; Wen, C.: Decentralized backstepping adaptive output tracking of interconnected nonlinear systems, Institute electrical and electronic engineering transactions on automatic control 53, 2378-2384 (2008)