Chen, Bing; Liu, Xiaoping; Liu, Kefu; Lin, Chong Direct adaptive fuzzy control of nonlinear strict-feedback systems. (English) Zbl 1166.93341 Automatica 45, No. 6, 1530-1535 (2009). Summary: This paper focuses on adaptive fuzzy tracking control for a class of uncertain single-input/single-output nonlinear strict-feedback systems. Fuzzy logic systems are directly used to approximate unknown and desired control signals and a novel direct adaptive fuzzy tracking controller is constructed via backstepping. The proposed adaptive fuzzy controller guarantees that the output of the closed-loop system converges to a small neighborhood of the reference signal and all the signals in the closed-loop system remain bounded. A main advantage of the proposed controller is that it contains only one adaptive parameter that needs to be updated online. Finally, an example is used to show the effectiveness of the proposed approach. Cited in 153 Documents MSC: 93C42 Fuzzy control/observation systems 93C10 Nonlinear systems in control theory 93C40 Adaptive control/observation systems Keywords:nonlinear systems; backstepping; adaptive fuzzy control; output tracking PDF BibTeX XML Cite \textit{B. Chen} et al., Automatica 45, No. 6, 1530--1535 (2009; Zbl 1166.93341) Full Text: DOI References: [1] Chen, B. S.; Li, C. H.; Chang, Y. C., H tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach, IEEE Transactions on Fuzzy Systems, 4, 1, 32-43 (1996) [2] Freeman, R. A.; Kokotovic, P. V., Robust nonlinear control design (1996), Birkhauser: Birkhauser Boston · Zbl 0863.93075 [3] Ge, S. S.; Hang, C. C.; Zhang, T., Stable adaptive control for multivariable systems with a triangular control structure, IEEE Transactions on Automatic Control, 45, 1221-1225 (2000) · Zbl 0972.93062 [4] Ge, S. S.; Lee, T. H.; Harris, C. J., Adaptive neural networks control of robotic manipulators (1998), World Scientific: World Scientific Singapore [5] Ge, S. S.; Wang, C., Direct adaptive neural network control for a class of nonlinear systems, IEEE Transactions on Neural Networks, 13, 1, 214-221 (2002) [6] Ge, S. S.; Wang, C., Adaptive neural control of uncertain \(M I M O\) nonlinear systems, IEEE Transactions on Neural Networks, 15, 3, 674-692 (2004) [7] Jiang, Z. P.; Hill, D. J., A robust adaptive backstepping scheme for nonlinear systems with unmodeled dynamics, IEEE Transactions on Automatic Control, 44, 2, 1705-1711 (1999) · Zbl 0958.93053 [8] Kanellakopoulos, I.; Kokotovic, P. V.; Morse, A. S., Systematic design of adaptive controller for feedback linearizable systems, IEEE Transactions on Automatic Control, 36, 11, 1241-1253 (1991) · Zbl 0768.93044 [9] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P. V., Adaptive nonlinear control without over parametrization, Systems Control Letters, 19, 177-185 (1992) · Zbl 0763.93043 [10] Kwan, C.; Lewis, F. L., Robust backstepping control of nonlinear systems using neural networks, IEEE Transactions on Systems, Man and Cybernetics: A, 30, 753-766 (2000) [11] Lewis, F. L.; Yesildirek, A.; Liu, K., Robust backstepping control of induction motor using neural networks, IEEE Transactions on Neural Networks, 11, 5, 1178-1187 (2000) [12] Lin, W.; Qian, C. J., Semi-global robust stabilization of MIMO nonlinear systems by partial state and dynamic output feedback, Automatica, 37, 7, 1093-1101 (2001) · Zbl 0984.93071 [13] Liu, X. P.; Gu, G. X.; Zhou, K. M., Robust stabilization of MIMO nonlinear systems by backstepping, Automatica, 35, 2, 987-992 (1999) · Zbl 0945.93606 [14] Marino, R.; Tomei, P., Global adaptive output-feedback control of nonlinear systems, \(P\) art I: Linear parameterization, IEEE Transactions on Automatic Control, 38, 1, 17-32 (1993) · Zbl 0783.93032 [15] Marino, R.; Tomei, P., Global adaptive output-feedback control of nonlinear systems, \(P\) art II: Nonlinear parameterization, IEEE Transactions on Automatic Control, 38, 1, 33-48 (1993) · Zbl 0799.93023 [16] Schwartz, B.; Isidori, A.; Tarn, T. J., Global normal form for MIMO nonlinear systems with applications to stabilization and disturbance attenuation, Mathematics of Control, Signals, and Systems, 12, 121-142 (1999) · Zbl 0949.93012 [17] Tong, S. C.; Li, H. H., Fuzzy adaptive sliding model control for MIMO nonlinear systems, IEEE Transactions on Fuzzy Systems, 11, 3, 354-360 (2003) [18] Wang, L. X.; Mendel, J. M., Fuzzy basis functions, universal approximation, and orthogonal least squares learning, IEEE Transactions on Neural Networks, 3, 5, 807-814 (1992) [19] Wang, L. X., Stable adaptive fuzzy control of nonlinear systems, IEEE Transactions on Fuzzy Systems, 1, 1, 146-155 (1993) [20] Wang, W. Y.; Chan, M. L.; Liu, C. H., Adaptive fuzzy control for strict-feedback canonical nonlinear systems with \(H_\infty\) tracking performance, IEEE Transactions on Systems, Man and Cybernetics, Part B, 30, 878-885 (2000) [21] Yang, Y. S.; Zhou, C.; Ren, J. S., Model reference adaptive robust fuzzy control for ship steering autopilot with uncertain nonlinear systems, Applied Soft Computing, 3, 305-316 (2003) [22] Yang, Y. S.; Feng, G.; Ren, J. S., A combined backstepping and small-gain approach to robust adaptive fuzzy control for strict-feedback nonlinear systems, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 34, 3, 406-420 (2004) [23] Zhang, T.; Ge, S. S.; Hang, C. C., Adaptive neural network control for strict-feedback nonlinear systems using backstepping design, Automatica, 36, 1835-1846 (2000) · Zbl 0976.93046 [24] Zhang, Y.; Peng, P. Y.; Jiang, Z. P., Stable neural controller design for unknown nonlinear systems using backstepping, IEEE Transactions on Neural Networks, 11, 5, 1347-1359 (2000) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.