zbMATH — the first resource for mathematics

A group of automorphisms of the rooted dyadic tree and associated Gelfand pairs. (English) Zbl 1167.05033
Summary: We study the group \(G\) of automorphisrns of the rooted dyadic tree generated by translation by 1 and multiplication by an odd integer \(q\), showing that \(G\) admits a self-similar presentation and it is isomorphic to the Baumslag-Solitar group \(BS_q\). Moreover, we show that the action of \(G\) on each level of the tree gives rise to a Gelfand pair.

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
05C05 Trees
Full Text: DOI Link EuDML
[1] L. BARTHOLDI - R. I. GRIGORCHUK - V. NEKRASHEVYCH, From fractal groups to fractal sets, Fractals in Graz (P. Grabner and W. Woess editors), Trends in Mathematics, Birkäuser Verlag, Basel (2003), pp. 25-118. Zbl1037.20040 MR2091700 · Zbl 1037.20040
[2] L. BARTHOLDI - R. I. GRIGORCHUK - Z. SÏUNIK, Branch groups, Handbook of Algebra, North-Holland, Amsterdam (2003), Vol. 3, pp. 989-1112. Zbl1140.20306 MR2035113 · Zbl 1140.20306
[3] L. BARTHOLDI - Z. SÏUNIK, Some solvable automaton groups, in Topological and asymptotic aspects of group theory, Contemp. Math., 394 (2006), pp. 11-30. Zbl1106.20021 MR2216703 · Zbl 1106.20021
[4] G. BAUMSLAG - D. SOLITAR, Some two-generator, one relator non-Hopfian groups, Bull. Amer. Math. Soc., 68 (1962), pp. 199-201. Zbl0108.02702 MR142635 · Zbl 0108.02702 · doi:10.1090/S0002-9904-1962-10745-9
[5] T. CECCHERINI-SILBERSTEIN - F. SCARABOTTI - F. TOLLI, Trees, wreath products and finite Gelfand pairs, Adv. Math., no. 206 (2006), pp. 503-537. Zbl1106.43006 MR2263713 · Zbl 1106.43006 · doi:10.1016/j.aim.2005.10.002
[6] T. CECCHERINI-SILBERSTEIN - F. SCARABOTTI - F. TOLLI, Finite Gelfand pairs and their applications to Probability and Statistics, J. Math. Sci. (New York), 141, no. 2 (2007), pp. 1182-1229. Zbl1173.43001 MR2462083 · Zbl 1173.43001 · doi:10.1007/s10958-007-0041-5
[7] T. CECCHERINI-SILBERSTEIN - F. SCARABOTTI - F. TOLLI, Harmonic Analysis on Finite Groups: Representation Theory, Gelfand Pairs and Markov Chains, Cambridge Studies in Advanced Mathematics 108, Cambridge University Press, 2008. Zbl1149.43001 MR2389056 · Zbl 1149.43001
[8] P. DIACONIS, Group Representations in Probability and Statistics, IMS Hayward, CA, 1988. Zbl0695.60012 MR964069 · Zbl 0695.60012
[9] A. FIGÀ-TALAMANCA, Note del Seminario di Analisi Armonica, a.a. 1992, Università di Roma “La Sapienza”.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.