×

Relative versions of theorems of Bogomolov and Sukhanov over perfect fields. (English) Zbl 1167.14030

The authors state and prove relative versions of theorems of F. A. Bogomolov [Math. USSR, Izv. 13, 499–555 (1979); translation from Izv. Akad. Nauk SSSR, Ser. Mat. 42, 1227–1287 (1978; Zbl 0439.14002)] and A. A. Sukhanov [Math. USSR, Sb. 65, No. 1, 97–108 (1990); translation from Mat. Sb., Nov. Ser. 137(179), No. 1(9), 90–102 (1988; Zbl 0663.20043)] concerning observable subgroups of linear algebraic groups over non-algebraically closed perfect fields. A closed subgroup \(H\) of a linear algebraic group \(G\) is observable if the homogeneous space \(G/H\) is a quasi-affine variety. Sukhanov gave a criterion for a closed subgroup of an algebraic group over an algebraically closed field to be observable. An algebraic subgroup of \(G\) is observable if and only if it is subparabolic.
In this article, the authors give a relative version of the theorem of Sukhanov for a non-algebraically closed perfect field. In order to do this, they prove a relative version of the theorem of Bogomolov, stating that if \(G\) is a connected reductive group, \(V\) is a finite dimensional \(G\)-module, and \(0\in \overline{Gv}\), then the isotropy group \(G_v\) is contained in a proper quasiparabolic subgroup of \(G\).

MSC:

14L24 Geometric invariant theory
14L30 Group actions on varieties or schemes (quotients)
20G15 Linear algebraic groups over arbitrary fields
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] A. Asok, B. Doran and F. Kirwan, Yang-Mills theory and Tamagawa numbers: The fascination of unexpected links in mathematics, Bull. London Math. Soc. 2008. · Zbl 1166.14024 · doi:10.1112/blms/bdn036
[2] A. Bialinycki-Birula, On homogeneous affine spaces of linear algebraic groups, Amer. J. Math. 85 (1963), 577-582. · Zbl 0116.38202 · doi:10.2307/2373109
[3] F. Bien and A. Borel, Sous-groupes épimorphiques de groupes linéaires algébriques. I, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 6, 649-653. · Zbl 0767.20017
[4] A. Borel, Linear algebraic groups , Second edition, Springer, New York, 1991. · Zbl 0726.20030
[5] A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. No. 27 (1965), 55-150. · Zbl 0145.17402 · doi:10.1007/BF02684375
[6] A. Borel and J. Tits, Compléments à l’article: “Groupes réductifs”, Inst. Hautes Études Sci. Publ. Math. No. 41 (1972), 253-276. · Zbl 0254.14018 · doi:10.1007/BF02715545
[7] F. A. Bogomolov, Holomorphic tensors and vector bundles on projective varieties, Math. U. S. S. R. Izvestiya 13 (1979), 499-555. · Zbl 0439.14002 · doi:10.1070/IM1979v013n03ABEH002076
[8] F. Châtelet, Variations sur un thème de H. Poincaré, Ann. Sci. École Norm. Sup. (3) 61 (1944), 249-300. · Zbl 0063.00801
[9] F. Coiai and Y. Holla, Extension of structure group of principal bundle in positive characteristic, J. Reine Angew. Math. 595 (2006), 1-24. · Zbl 1098.14029 · doi:10.1515/CRELLE.2006.042
[10] F. D. Grosshans, Algebraic Homogeneous Spaces and Invariant Theory. Lec. Notes in Math. 1673. Springer, Verlag, 1997. · Zbl 0886.14020
[11] G. R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299-316. · Zbl 0406.14031 · doi:10.2307/1971168
[12] S. Mukai, An introduction to invariants and moduli , Translated from the 1998 and 2000 Japanese editions by W. M. Oxbury, Cambridge Univ. Press, Cambridge, 2003.
[13] D. Mumford, J. Fogarty and F. Kirwan, Geometric invariant theory , Third edition, Springer, Berlin, 1994. · Zbl 0797.14004
[14] S. Ramanan and A. Ramanathan, Some remarks on instability flag, Tohoku Math. J. (2) 36 (1984), no. 2, 269-291. · Zbl 0567.14027 · doi:10.2748/tmj/1178228852
[15] C. S. Seshadri, Geometric reductivity over arbitrary base, Advances in Math. 26 (1977), no. 3, 225-274. · Zbl 0371.14009 · doi:10.1016/0001-8708(77)90041-X
[16] A. A. Sukhanov, Description of the observable subgroups of linear algebraic groups, Mat. Sb. (N.S.) 137(179) (1988), no. 1, 90-102, 144; translation in Math. USSR-Sb. 65 (1990), no. 1, 97-108. · Zbl 0663.20043
[17] N. Q. Thǎńg and D. P. Bǎć, Some rationality properties of observable groups and related questions, Illinois J. Math. 49 (2005), no. 2, 431-444. · Zbl 1081.14066
[18] J. Tits, Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196-220. · Zbl 0227.20015 · doi:10.1515/crll.1971.247.196
[19] B. Weiss, Finite dimensional representations and subgroup actions on homogeneous spaces, Israel J. Math. 106 (1998), 189-207. · Zbl 0909.22022 · doi:10.1007/BF02773468
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.