×

zbMATH — the first resource for mathematics

Mixed Hodge structures on log deformations. (English) Zbl 1167.14301
Summary: We study the relationship of constructions of cohomological mixed Hodge complexes and related \(\ell\)-adic constructions by various authors systematically.

MSC:
14D07 Variation of Hodge structures (algebro-geometric aspects)
14D15 Formal methods and deformations in algebraic geometry
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] M. ARTIN - A. GROTHENDIECK - J.-L. VERDIER, Théorie des topos et cohomologie étale des schémas, Lect. Notes Math., 269, 270, 305 (1972-73).
[2] P. DELIGNE, Equations différentielles à points singuliers réguliers, Lect. Notes Math., 163 (1970). Zbl0244.14004 MR417174 · Zbl 0244.14004 · doi:10.1007/BFb0061194
[3] P. DELIGNE, Théorie de Hodge, III, Publ. Math., Inst. Hautes Étud. Sci., 44 (1975), pp. 5-77. Zbl0237.14003 MR498552 · Zbl 0237.14003 · doi:10.1007/BF02685881 · numdam:PMIHES_1974__44__5_0 · eudml:103935
[4] R. HARTSHORNE, Residues and Duality, Lect. Notes Math., 20 (1966). Zbl0212.26101 MR222093 · Zbl 0212.26101 · doi:10.1007/BFb0080482 · eudml:203789
[5] L. ILLUSIE, Logarithmic spaces (according to K. Kato), in Barsotti Symposium in Algebraic Geometry (Ed. V. Cristante, W. Messing), Perspectives in Math. 15, Academic Press, 1994, pp. 183-203. Zbl0832.14015 MR1307397 · Zbl 0832.14015
[6] M. KASHIWARA - P. SHAPIRA, Sheaves on Manifolds, Springer (1990). Zbl0709.18001 MR1074006 · Zbl 0709.18001
[7] K. KATO, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (Igusa, J.-I., ed.), Johns Hopkins University Press, Baltimore, 1989, pp. 191-224. Zbl0776.14004 MR1463703 · Zbl 0776.14004
[8] K. KATO - C. NAKAYAMA, Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over C, Kodai Math. J., 22 (1999), pp. 161-186. Zbl0957.14015 MR1700591 · Zbl 0957.14015 · doi:10.2996/kmj/1138044041
[9] Y. KAWAMATA - Y. NAMIKAWA, Logarithmic deformations of normal crossing varieties and smoothing of degenerate Calabi-Yau varieties, Invent. Math., 118 (1994), pp. 395-409. Zbl0848.14004 MR1296351 · Zbl 0848.14004 · doi:10.1007/BF01231538 · eudml:144241
[10] T. MATSUBARA, On log Hodge structures of higher direct images, Kodai Math. J., 21 (1998), pp. 81-101. Zbl1017.32017 MR1645599 · Zbl 1017.32017 · doi:10.2996/kmj/1138043866
[11] C. NAKAYAMA, Degeneration of l-adic weight spectral sequences, Amer. J. Math., 122 (2000), pp. 721-733. Zbl1033.14012 MR1771570 · Zbl 1033.14012 · doi:10.1353/ajm.2000.0030 · muse.jhu.edu
[12] M. RAPOPORT - TH. ZINK, Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik, Invent. Math., 68 (1982), pp. 21-201. Zbl0498.14010 MR666636 · Zbl 0498.14010 · doi:10.1007/BF01394268 · eudml:142926
[13] J. H. M. STEENBRINK, Limits of Hodge structures, Invent. Math., 31 (1976), pp. 229-257. Zbl0303.14002 MR429885 · Zbl 0303.14002 · doi:10.1007/BF01403146 · eudml:142362
[14] J. H. M. STEENBRINK, Logarithmic embeddings of varieties with normal crossings and mixed Hodge structures, Math. Ann., 301 (1995), pp. 105-118. Zbl0814.14010 MR1312571 · Zbl 0814.14010 · doi:10.1007/BF01446621 · eudml:165283
[15] J. H. M. STEENBRINK - S. ZUCKER, Variation of mixed Hodge structure. I, Invent. Math., 80 (1985), pp. 489-542. Zbl0626.14007 MR791673 · Zbl 0626.14007 · doi:10.1007/BF01388729 · eudml:143242
[16] S. USUI, Recovery of vanishing cycles by log geometry, Tôhoku Math. J., 53 (1) (2001), pp. 1-36. Zbl1015.14005 MR1808639 · Zbl 1015.14005 · doi:10.2748/tmj/1178207529
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.