×

zbMATH — the first resource for mathematics

Problems from the Workshop on Automorphisms of Curves. (English) Zbl 1167.14312
From the text: Over the week of August 16–20, 2004, we conducted a workshop on the topic ‘Automorphisms of curves’ at the Lorentz Center in Leiden. The programme included two ‘problem sessions’. Some of the problems presented at the workshop were written down: this is our edition of these refereed and revised papers.
Contents: Irene I. Bouw and Stefan Wewers, Rational functions with given monodromy on generic curves (131–133); Ted Chinburg, Can deformation rings of group representations not be local complete intersections? (135); Gunther Cornelissen, Lifting an automorphism group to finite characteristic (137–139); Carlo Gasbarri, Flat connections and representations of the fundamental group in characteristic \(p>0\) (141–143); Darren Glass and Rachel Pries, Questions on \(p\)-torsion of hyperelliptic curves (145–149); Claus Lehr and Michel Matignon, Automorphisms of curves and stable reduction (151–157); Michel Matignon, Lifting Galois covers of smooth curves (159–164); Frans Oort, Abelian varieties isogenous to a Jacobian (165–172); Frans Oort, Minimal maximal number of automorphisms of curves (173).
These nine problem papers will not be reviewed individually.

MSC:
14H37 Automorphisms of curves
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] E. ARBARELLO - M. CORNALBA - P. GRIFFITH - J. HARRIS, Geometry of Algebraic Curves, Number 267 in Grundlehren. Springer, 1985. Zbl0559.14017 MR770932 · Zbl 0559.14017
[2] I. I. BOUW - S. WEWERS, Alternating groups as monodromy groups in positive characteristic, Math. AG/0402436, to appear in Pacific J. Math. Zbl1111.14021 MR2200250 · Zbl 1111.14021
[3] M. D. FRIED - E. KLASSEN - Y. KOPELIOVICH, Realizing alternating groups as monodromy groups of genus one covers, Proc. Amer. Math. Soc., 129 (2000), pp. 111-119. Zbl0978.30026 MR1784019 · Zbl 0978.30026
[4] M. D. FRIED - H. VÖLKLEIN, The inverse Galois problem and rational points on moduli spaces, Math. Ann., 290 (1991), pp. 771-800. Zbl0763.12004 MR1119950 · Zbl 0763.12004
[5] W. FULTON, Hurwitz schemes and the irreducibility of the moduli of algebraic curves, Ann. of Math. 90 (1969), pp. 542-575. Zbl0194.21901 MR260752 · Zbl 0194.21901
[6] J. HARRIS - I. MORRISON, Moduli of curves, Number 187 in GTM. Springer, 1998. Zbl0913.14005 MR1631825 · Zbl 0913.14005
[7] K. MAGAARD - H. VÖLKLEIN, The monodromy group of a function on a general curve, Math. AG/0304130, to appear in Israel J. Math, 2003. Zbl1075.14027 MR2063042 · Zbl 1075.14027
[8] A. TAMAGAWA, Finiteness of isomorphism classes of curves in positive characteristic with prescribed fundamental group, Preprint. Zbl1100.14021 MR2073193 · Zbl 1100.14021
[9] G. BÖCKLE, DemusÏkin groups with group actions and applications to deformations of Galois representations, Compositio Math., 121 (2000), pp. 109-154. Zbl0952.11009 MR1757878 · Zbl 0952.11009
[10] B. DE SMIT - H. W. LENSTRA, Jr., Explicit construction of universal deformation rings, in Modular forms and Fermat’s Last Theorem, G. Cornell, J. H. Silverman - G. Stevens (eds.), Springer, New York, Berlin, Heidelberg (1977), pp. 313- 326. Zbl0907.13010 MR1638482 · Zbl 0907.13010
[11] J. BERTIN, Obstructions locales au relèvement de revêtements galoisiens de courbes lisses, C. R. Acad. Sci. Paris Sér. I Math. 326, no. 1 (1998), pp. 55-58. Zbl0952.14018 MR1649485 · Zbl 0952.14018
[12] J. BERTIN - A. MÉZARD, Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques, Invent. Math., 141 (2000), pp. 195-238. Zbl0993.14014 MR1767273 · Zbl 0993.14014
[13] I. BOUW - S. WEWERS, The local lifting problem for dihedral groups, Math. AG/0409395. · Zbl 1108.14025
[14] G. CORNELISSEN - F. KATO, Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic, Duke Math. J., 116 (2003), pp. 431-470. Zbl1092.14032 MR1958094 · Zbl 1092.14032
[15] G. CORNELISSEN - A. MÉZARD, Relèvements des revêtements de courbes faiblement ramifiés, Math. AG/0412189. Zbl1108.14024 · Zbl 1108.14024
[16] M. MATIGNON, p-groupes abéliens de type (p; Á Á Á ; p) et disques ouverts p-adiques, Manuscripta Math., 99, no. 1 (1999), pp. 93-109. Zbl0953.12004 MR1697205 · Zbl 0953.12004
[17] S. NAKAJIMA, p-ranks and automorphism groups of algebraic curves, Trans. Amer. Math. Soc., 303 (1987), pp. 595-607. Zbl0644.14010 MR902787 · Zbl 0644.14010
[18] F. OORT - T. SEKIGUCHI - N. SUWA, On the deformation of Artin-Schreier to Kummer, Ann. Sci. École Norm. Sup. (4) 22, no. 3 (1989), pp. 345-375. Zbl0714.14024 MR1011987 · Zbl 0714.14024
[19] G. PAGOT, Relèvement des actions de (Z=2)2 , preprint (2004).
[20] D. GIESEKER, Flat vector bundles and the fundamental group in non-zero characteristics. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975). Zbl0322.14009 MR382271 · Zbl 0322.14009
[21] H. LANGE - U. STUHLER, Vektorbndel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math. Z., 156, no. 1 (1977), pp. 73-83. Zbl0349.14018 MR472827 · Zbl 0349.14018
[22] M. V. NORI, On the representations of the fundamental group, Compositio Math., 33, no. 1 (1976), pp. 29-41. Zbl0337.14016 MR417179 · Zbl 0337.14016
[23] F. OORT, Subvarieties of Moduli Space. Inventiones Mathematicae, 29 (1974), pp. 95-119. Zbl0259.14011 MR424813 · Zbl 0259.14011
[24] C. FABER - G. VAN DER GEER, Complete subvarieties of moduli spaces and the Prym map, to appear in J. Reine Angew. Math. Zbl1075.14023 MR2084584 · Zbl 1075.14023
[25] D. GLASS - R. PRIES, Hyperelliptic curves with prescribed p-torsion, accepted by Manuscripta. Zbl1093.14039 · Zbl 1093.14039
[26] E. GOREN, Lectures on Hilbert modular varieties and modular forms, volume 14 of CRM Monograph Series, American Mathematical Society, Providence, RI, 2002. With the assistance of Marc-Hubert Nicole. Zbl0986.11037 MR1863355 · Zbl 0986.11037
[27] J.-I. IGUSA, Class number of a definite quaternion with prime discriminant, Proc. Nat. Acad. Sci. USA, 44 (1958), pp. 312-314. Zbl0081.03601 MR98728 · Zbl 0081.03601
[28] E. KANI - M. ROSEN, Idempotent relations and factors of Jacobians, Math. Ann., 284 (2) (1989) pp. 307-327. Zbl0652.14011 MR1000113 · Zbl 0652.14011
[29] F. OORT, Hyperelliptic supersingular curves. In Arithmetic algebraic geometry (Texel, 1989), volume 89 of Progr. Math., pages 247-284. Birkhäuser Boston, Boston, MA, 1991. Zbl0820.14018 MR1085262 · Zbl 0820.14018
[30] N. YUI, On the Jacobian varieties of hyperelliptic curves over fields of characteristic p > 2, J. Algebra, 52 (2) (1978), pp. 378-410. Zbl0404.14008 MR491717 · Zbl 0404.14008
[31] B. GREEN - M. MATIGNON, Order p automorphisms of the open disc of a p-adic field, J. Amer. Math. Soc., 12 (1999), pp. 269-303. Zbl0923.14007 MR1630112 · Zbl 0923.14007
[32] Y. HENRIO, Arbres de Hurwitz et automorphismes d’ordre p des disques et des couronnes p-adiques formels, Thèse Université Bordeaux I, 1999.
[33] B. HUPPERT, Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Band 134 Springer-Verlag, Berlin-New York 1967. Zbl0217.07201 MR224703 · Zbl 0217.07201
[34] C. LEHR, Reduction of p-cyclic Covers of the Projective Line, Manuscripta Math., 106 2 (2001) 151-175. Zbl1065.14508 MR1865562 · Zbl 1065.14508
[35] C. LEHR - M. MATIGNON, Automorphism groups for p-cyclic covers of the affine line, to appear in Compositio Math. http://www.math.u-bordeaux1.fr/  matignon/preprints.html Zbl1083.14028 MR2157136 · Zbl 1083.14028
[36] C. LEHR - M. MATIGNON, Curves with a big p-group action, in preparation.
[37] C. LEHR, M. MATIGNON, Wild monodromy and automorphisms of curves, conference proceedings, Tokyo, (2002) (T. Sekiguchi, N. Suwa, editors), to appear. Available on http://www.math.u-bordeaux1.fr/ matignon/ MR2272976 · Zbl 1116.14020
[38] C. LEHR - M. MATIGNON, Wild monodromy and automorphisms of curves, in preparation. Zbl1116.14020 · Zbl 1116.14020
[39] M. MATIGNON, Vers un algorithme pour la réduction stable des revêtements p-cycliques de la droite projective sur un corps p-adique, Mathematische Annalen, 325, (2003), pp. 323-354. Zbl1051.14031 MR1962052 · Zbl 1051.14031
[40] S. NAKAJIMA, p-ranks and automorphism groups of algebraic curves, Trans. Amer. Math. Soc., 303 (1987), pp. 595-607. Zbl0644.14010 MR902787 · Zbl 0644.14010
[41] M. RAYNAUD, p-groupes et réduction semi-stable des courbes, The Grothendieck Festschrift, Vol III, Progress in Mathematics, 88 (1990), Birkhäuser, pp. 179-197. Zbl0722.14013 MR1106915 · Zbl 0722.14013
[42] M. RAYNAUD, Spécialisation des revêtements en caractéristique p > 0, Ann. Scient. Ec. Norm. Sup., 32 (4) (1999), pp. 87-126. Zbl0999.14004 MR1670532 · Zbl 0999.14004
[43] M. SUZUKI, Group theory II, Grundlehren der Mathematischen Wissenschaften 248, Springer-Verlag, New York, 1986. Zbl0586.20001 MR815926 · Zbl 0586.20001
[44] J. BERTIN, Obstructions locales au relêvement de revêtements galoisiens de courbes lisses, C. R. Acad. Sci. Paris Sér. I Math., 326, no. 1 (1998), pp. 55-58. Zbl0952.14018 MR1649485 · Zbl 0952.14018
[45] I. BOUW, - S. WEWERS, The local lifting problem for dihedral groups, preprint Math. AG/0409395. Zbl1108.14025 MR2254623 · Zbl 1108.14025
[46] B. GREEN - M. MATIGNON, Liftings of Galois covers of smooth curves, Compositio Math., 113 (1998), pp. 239-274. Zbl0923.14006 MR1645000 · Zbl 0923.14006
[47] B. GREEN - M. MATIGNON, Order p automorphisms of the open disc of a p-adic field, J. Amer. Math. Soc., 12 (1999), pp. 269-303. Zbl0923.14007 MR1630112 · Zbl 0923.14007
[48] Y. HENRIO, Arbres de Hurwitz et automorphismes d’ordre p des disques et des couronnes p-adiques formels, Thèse Université Bordeaux I, 1999.
[49] Q. LIU, Reduction and lifting of finite covers of curves, Proceedings of the 2003 Workshop on Cryptography and Related Mathematics, Chuo University (2003), pp. 161-180, available at http://www.math.u-bordeaux1.fr/ liu/preprints.html
[50] M. MATIGNON, p-groupes abeliens de type (p; . . . ; p) et disques ouverts p-adiques, Manuscripta Math., 99 (1999), pp. 93-109. Zbl0953.12004 MR1697205 · Zbl 0953.12004
[51] M. MATIGNON, Autour d’une conjecture de F. Oort sur le relèvement de revêtements galoisiens de courbes, French version for the Limoges seminar (2003) of my MSRI lecture in the workshop on Constructive Galois Theory (1999), available at http://www.math.u-bordeaux1.fr/ matignon/preprints.html
[52] M. MATIGNON, Lifting (Z=2Z)2 -actions, (2003) available at http://www.math.u-bordeaux1.fr/ matignon/preprints.html
[53] G. PAGOT, Fp-espaces vectoriels de formes différentielles logarithmiques en caractéristique > 0 et automorphismes du disque ouvert p-adique, J. Number Theory, 97 no. 1 (2002), pp. 58-94. Zbl1076.14504 MR1939137 · Zbl 1076.14504
[54] G. PAGOT, Relèvement en caractéristique zéro d’actions de groupes abéliens de type (p; :::; p), Thèse Université Bordeaux I, 2002.
[55] G. PAGOT, Relèvement des actions de (Z=2Z)2 , Projet de note aux CRAS (2004).
[56] T. SEKIGUCHI - N. SUWA, A note on extensions of algebraic and formal groups. IV. Kummer-Artin-Schreier-Witt theory of degree p2 , Tohoku Math. J. (2) 53, no. 2 (2001), pp. 203-240. Zbl1073.14546 MR1829979 · Zbl 1073.14546
[57] T. SEKIGUCHI - N. SUWA, A note on extensions of algebraic and formal groups. V, Japan. J. Math. (N.S.) 29 no. 2 (2003), pp. 221-284. Zbl1075.14045 MR2035540 · Zbl 1075.14045
[58] T. SEKIGUCHI - N. Suwa, On the unified Kummer-Artin-Schreier-Witt theory, Prépublication Université de Bordeaux (1999).
[59] K.-Z. LI - F. OORT, Moduli of supersingular abelian varieties, Lecture Notes Math. 1680, Springer - Verlag, 116 (1998), pp. ??? Zbl0920.14021 MR1611305 · Zbl 0920.14021
[60] C. FABER - G. VAN DER GEER, Complete subvarieties of moduli spaces and the Prym map, In arXiv: math.AG/0305334 [to appear in J. Reine Angew. Math.] Zbl1075.14023 MR2084584 · Zbl 1075.14023
[61] G. VAN DER GEER - M. VAN DER VLUGT, On the existence of supersingular curves of given genus, J. Reine Angew. Math., 458 (1995), pp. 53-61. Zbl0819.11022 MR1310953 · Zbl 0819.11022
[62] D. GLASS - R. PRIES, Hyperelliptic curves with prescribed p-torsion, [To appear in Masnuscr. Math.] Zbl1093.14039 MR2154252 · Zbl 1093.14039
[63] D. GLASS - R. PRIES, Questions on p-torsion of hyperelliptic curves, [This volume] · Zbl 1093.14039
[64] N. KATZ, Slope filtrations of F-crystals, Journ. Géom. Alg. Rennes 1978. Vol. I, Astérisque 63, Soc. Math. France 1979; pp. 113-163. Zbl0426.14007 MR563463 · Zbl 0426.14007
[65] YU. I. MANIN, The theory of commutative formal groups over fields of finite characteristic, Usp. Math., 18 (1963), pp. 3-90; Russ. Math. Surveys, 18 (1963), pp. 1-80. Zbl0128.15603 MR157972 · Zbl 0128.15603
[66] J. S. MILNE, Jacobian varieties, Chapter 7 in: Arithmetic geometry (Ed. G. Cornell - J. H. Silverman. Springer - Verlag, 1986; pp. 167-212. Zbl0604.14018 MR861976 · Zbl 0604.14018
[67] P. NORMAN - F. OORT, Moduli of abelian varieties, Ann. Math., 112 (1980), pp. 413-439. Zbl0483.14010 MR595202 · Zbl 0483.14010
[68] F. OORT, Hyperelliptic supersingular curves, In: Arithmetic Algebraic Geometry (Texel 1989) (Ed. G. van der Geer, F. Oort, J. Steenbrink). Progress Math. 89, Birkhäuser 1991; pp. 247-284. Zbl0820.14018 MR1085262 · Zbl 0820.14018
[69] F. OORT, Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. Math., 152 (2000), pp. 183-206. Zbl0991.14016 MR1792294 · Zbl 0991.14016
[70] F. OORT, A stratification of a moduli space of polarized abelian varieties, In: Moduli of abelian varieties (Ed. C. Faber, G. van der Geer, F. Oort). Progress Math., 195, Birkhäuser Verlag 2001; pp. 345-416. Zbl1052.14047 MR1827027 · Zbl 1052.14047
[71] F. OORT, Newton polygon strata in the moduli space of abelian varieties, In: Moduli of abelian varieties (Ed. C. Faber, G. van der Geer, F. Oort). Progress Math., 195, Birkhäuser Verlag 2001; pp. 417-440. Zbl1086.14037 MR1827028 · Zbl 1086.14037
[72] F. OORT - K. UENO, Principally polarized abelian varieties of dimension two or three are Jacobian varieties, Journ. Fac. Sc. Univ. Tokyo, Sec. IA, 20 (1973), pp. 377-381. Zbl0272.14008 MR364265 · Zbl 0272.14008
[73] R. S. G. RE, Invariants of curves and Jacobians in positive characteristic, PhD-thesis Amsterdam 2004.
[74] J. SCHOLTEN - H. J. ZHU, Hyperelliptic curves in characteristic 2, Int. Math. Res. Not. 17 (2002), pp. 905-917. Zbl1034.14013 MR1899907 · Zbl 1034.14013
[75] J. SCHOLTEN - H. J. ZHU, Families of supersingular curves in characteristic 2, Math. Res. Lett., 9 (2002), pp. 639-650. Zbl1057.14037 MR1906067 · Zbl 1057.14037
[76] A. WEIL, Zum Beweis des Torellischen Satzes, Nachr. Akad. Göttingen, Math.-Phys. Kl. (1957), pp. 33-53. See êII [1957a]. Zbl0079.37002 MR89483 · Zbl 0079.37002
[77] R. D. M. ACCOLA, On the number of automorphisms of a closed Riemann surface, Transact. AMS 131 (1968), pp. 398-408. Zbl0179.11401 MR222281 · Zbl 0179.11401
[78] R. D. M. ACCOLA, Topics in the theory of Riemann surfaces, Lect. Notes Math. 1595, Springer - Verlag, 1994. Zbl0820.30002 MR1329541 · Zbl 0820.30002
[79] A. M. MACBEATH, On a theorem of Hurwitz, Proceed. Glasgow Math. Assoc., 5 (1961), pp. 90-96. Zbl0134.16603 MR146724 · Zbl 0134.16603
[80] C. MACLACHLAN, A bound for the number of automorphisms of a compact Riemann surface, Journ. London Math. Soc. 44 (1969), pp. 265-272. Zbl0164.37904 MR236378 · Zbl 0164.37904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.