Traverso’s isogeny conjecture for \(p\)-divisible groups. (English) Zbl 1167.14322

Summary: Let \(k\) be an algebraically closed field of characteristic \(p>0\). Let \(c, d\in\mathbb{N}\). Let \(b_{c,d}\geq 1\) be the smallest integer such that for any two \(p\)-divisible groups \(H\) and \(H'\) over \(k\) of codimension \(c\) and dimension \(d\) the following assertion holds: If \(H[p^{b_{c,d}}]\) and \(H'[p^{b_{c,d}}]\) are isomorphic, then \(H\) and \(H'\) are isogenous. We show that \(b_{c,d}=\lfloor\frac{cd}{c+d}\rfloor+1\). This proves Traverso’s isogeny conjecture for \(p\)-divisible groups over \(k\).


14L05 Formal groups, \(p\)-divisible groups
11G10 Abelian varieties of dimension \(> 1\)
11G18 Arithmetic aspects of modular and Shimura varieties
Full Text: arXiv EuDML


[1] J. DE JONG, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes Études Sci. Publ. Math., Vol. 82 (1995), pp. 5-96. Zbl0864.14009 MR1383213 · Zbl 0864.14009
[2] J. DE JONG - F. OORT, Purity of the stratification by Newton polygons, J. of Amer. Math. Soc., 13, no. 1 (2000), pp. 209-241. Zbl0954.14007 MR1703336 · Zbl 0954.14007
[3] M. DEMAZURE, Lectures on p-divisible groups, Lecture Notes in Math., Vol. 302, Springer-Verlag, 1972. Zbl0247.14010 MR344261 · Zbl 0247.14010
[4] J. DIEUDONNÉ, Groupes de Lie et hyperalgèbres de Lie sur un corps de caractérisque p > 0 (VII), Math. Annalen, 134 (1957), pp. 114-133. Zbl0086.02605 MR98146 · Zbl 0086.02605
[5] L. ILLUSIE, Déformations des groupes de Barsotti-Tate (d’après A. Grothendieck), Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84), pp. 151-198, J. Astérisque, 127, Soc. Math. de France, Paris, 1985. MR801922 · Zbl 1182.14050
[6] Y. I. MANIN, The theory of formal commutative groups in finite characteristic, Russian Math. Surv., 18, no. 6 (1963), pp. 1-83. Zbl0128.15603 · Zbl 0128.15603
[7] M.-H. NICOLE - A. VASIU, Minimal truncations of supersingular p-divisible groups, manuscript, June 2006 (see math.NT/0606777). MR2375706
[8] F. OORT, Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. of Math. (2) 152, no. 1 (2000), pp. 183-206. Zbl0991.14016 MR1792294 · Zbl 0991.14016
[9] F. OORT, Newton polygon strata in the moduli of abelian varieties, Moduli of abelian varieties (Texel Island, 1999), pp. 417-440, Progr. Math., 195, Birkhäuser, Basel, 2001. Zbl1086.14037 MR1827028 · Zbl 1086.14037
[10] F. OORT, Foliations in moduli spaces of abelian varieties, J. of Amer. Math. Soc., 17, no. 2 (2004), pp. 267-296. Zbl1041.14018 MR2051612 · Zbl 1041.14018
[11] F. OORT, Minimal p-divisible groups, Ann. of Math. (2) 161, no. 2 (2005), pp. 1021-1036. Zbl1081.14065 MR2153405 · Zbl 1081.14065
[12] C. TRAVERSO, Sulla classificazione dei gruppi analitici di caratteristica positiva, Ann. Scuola Norm. Sup. Pisa, 23, no. 3 (1969), pp. 481-507. Zbl0214.48301 MR260757 · Zbl 0214.48301
[13] C. TRAVERSO, p-divisible groups over fields, Symposia Mathematica XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), pp. 45-65, Academic Press, London, 1973. Zbl0293.14011 MR344262 · Zbl 0293.14011
[14] C. TRAVERSO, Specializations of Barsotti-Tate groups, Symposia Mathematica XXIV (Sympos., INDAM, Rome, 1979), pp. 1-21, Acad. Press, London-New York, 1981. Zbl0466.14016 MR619238 · Zbl 0466.14016
[15] A. VASIU, Crystalline Boundedness Principle, Ann. Sci. École Norm. Sup., 39, no. 2 (2006), pp. 245-300. Zbl1143.14037 MR2245533 · Zbl 1143.14037
[16] A. VASIU, Reconstructing p-divisible groups from their truncations of small level, manuscript, April 2006 (see math.NT/0607268). · Zbl 1317.14043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.