## On extended reversible rings.(English)Zbl 1167.16018

Let $$R$$ be a ring with 1. An endomorphism $$\alpha$$ of $$R$$ is called right (resp. left) reversible if whenever $$ab=0$$ for $$a,b\in R$$, $$b\alpha(a)=0$$ (resp. $$\alpha(b)a=0$$). A ring $$R$$ is called right (resp. left) $$\alpha$$-reversible if there exists a right (resp. left) reversible endomorphism $$\alpha$$ of $$R$$, and $$R$$ is $$\alpha$$-reversible if it is both right and left $$\alpha$$-reversible ring. Then the authors show some properties of a right $$\alpha$$-, and left $$\alpha$$-, and $$\alpha$$-reversible ring. Let $$R[x;\alpha]$$ be the skew polynomial ring. A ring $$R$$ is called $$\alpha$$-Armendariz (resp. $$\alpha$$-skew Armendariz) if for $$p=\sum_{i=0}^m a_ix^i$$ and $$q=\sum_{j=0}^n b_jx^j\in R[x;\alpha]$$, $$pq=0$$ implies that $$a_ib_j=0$$ (resp. $$a_i\alpha^i(b_j)=0$$) for all $$0\leq i\leq m$$ and $$0\leq j\leq n$$. Then some relations are given between the class of $$\alpha$$-reversible rings and other classes of rings such as $$\alpha$$-skew Armendariz rings, skew polynomial rings, reduced rings, and rings of Laurent polynomials $$R[x;x^{-1}]$$.
Theorem 1. (1) If $$R$$ is a reduced and $$\alpha$$-reversible ring, then $$R$$ is $$\alpha$$-skew Armendariz. (2) If $$R[x;\alpha]$$ is a reversible ring, then $$R$$ is $$\alpha$$-reversible.
Theorem 2. (1) The polynomial ring $$R[x]$$ is $$\alpha$$-reversible ring if and only if $$R[x;x^{-1}]$$ is right $$\alpha$$-reversible. (2) Let $$R$$ be an Armendariz ring. Then $$R$$ is right $$\alpha$$-reversible if and only if $$R[x]$$ is right $$\alpha$$-reversible. (3) Let $$R$$ be a reduced ring and $$n$$ a positive integer. If $$R$$ is right $$\alpha$$-reversible with $$\alpha(1)=1$$, then $$R[x]/\langle x^n\rangle$$ is right $$\overline\alpha$$-reversible ring, where $$\langle x^n\rangle$$ is the ideal generated by $$x^n$$ and $$\overline\alpha$$ is the endomorphism of $$R[x]/\langle x^n\rangle$$ such that $$\overline\alpha(f+\langle x^n\rangle)=\alpha(f)+\langle x^n\rangle$$. Thus some known results are derived.

### MSC:

 16S36 Ordinary and skew polynomial rings and semigroup rings 16W20 Automorphisms and endomorphisms 16U80 Generalizations of commutativity (associative rings and algebras) 16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras)
Full Text:

### References:

 [1] DOI: 10.1017/S1446788700029190 · Zbl 0292.16009 · doi:10.1017/S1446788700029190 [2] DOI: 10.1112/S0024609399006116 · Zbl 1021.16019 · doi:10.1112/S0024609399006116 [3] Habeb J. M., Math. J. Okayama Univ. 32 pp 73– [4] DOI: 10.1016/S0022-4049(99)00020-1 · Zbl 0982.16021 · doi:10.1016/S0022-4049(99)00020-1 [5] DOI: 10.1081/AGB-120016752 · Zbl 1042.16014 · doi:10.1081/AGB-120016752 [6] DOI: 10.1142/S1005386705000222 · Zbl 1093.16026 · doi:10.1142/S1005386705000222 [7] DOI: 10.1142/S100538670600023X · Zbl 1095.16014 · doi:10.1142/S100538670600023X [8] DOI: 10.1081/AGB-120013179 · Zbl 1023.16005 · doi:10.1081/AGB-120013179 [9] DOI: 10.1006/jabr.1999.8017 · Zbl 0957.16018 · doi:10.1006/jabr.1999.8017 [10] DOI: 10.1016/S0022-4049(03)00109-9 · Zbl 1040.16021 · doi:10.1016/S0022-4049(03)00109-9 [11] Krempa J., Algebra Colloq. 3 pp 289– [12] DOI: 10.4153/CMB-1971-065-1 · Zbl 0217.34005 · doi:10.4153/CMB-1971-065-1 [13] DOI: 10.3792/pjaa.73.14 · Zbl 0960.16038 · doi:10.3792/pjaa.73.14
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.