##
**Dynamic analysis and suppressing chaotic impacts of a two-degree-of-freedom oscillator with a clearance.**
*(English)*
Zbl 1167.34335

Summary: A two-degree-of-freedom impact oscillator is considered. The maximum displacement of one of the masses is limited to a threshold value by the symmetrical rigid stops. Impacts between the mass and the stops are described by an instantaneous coefficient of restitution. Dynamics of the system is studied with special attention to periodic-impact motions and bifurcations. Period-one double-impact symmetrical motion and transcendental impact Poincaré map of the system is derived analytically. Stability and local bifurcations of the period-one double-impact symmetrical motions are analyzed by using the impact Poincaré map. The Lyapunov exponents in the vibratory system with impacts are calculated by using the transcendental impact map. The influence of the clearance and excitation frequency on symmetrical double-impact periodic motion and bifurcations is analyzed. A series of other periodic-impact motions are found and the corresponding bifurcations are analyzed. For smaller values of clearance, period-one double-impact symmetrical motion usually undergoes pitchfork bifurcation with decrease in the forcing frequency. For large values of the clearance, period-one double-impact symmetrical motion undergoes Neimark-Sacker bifurcation with decrease in the forcing frequency. The chattering-impact vibration and the sticking phenomena are found to occur in the region of low forcing frequency, which enlarges the adverse effects such as high noise levels, wear and tear and so on. These imply that the dynamic behavior of this system is very rich and complex, varying from different types of periodic motions to chaos, even chattering-impacting vibration and sticking. Chaotic-impact motions are suppressed to minimize the adverse effects by using external driving force, delay feedback and feedback-based method of period pulse.

### MSC:

34C23 | Bifurcation theory for ordinary differential equations |

37D45 | Strange attractors, chaotic dynamics of systems with hyperbolic behavior |

37N05 | Dynamical systems in classical and celestial mechanics |

70F05 | Two-body problems |

PDF
BibTeX
XML
Cite

\textit{G. Luo} et al., Nonlinear Anal., Real World Appl. 10, No. 2, 756--778 (2009; Zbl 1167.34335)

### References:

[1] | Shaw, S. W.; Holmes, P. J., A periodically forced piecewise linear oscillator, Journal of Sound and Vibration, 90, 1, 129-155 (1983) · Zbl 0561.70022 |

[2] | Luo, G. W.; Zhang, Y. L.; Zhang, J. G., Codimension two bifurcations of fixed points in a class of vibratory systems with rigid stops, Nonlinear Analysis: Real World Applications, 8, 4, 1272-1292 (2007) · Zbl 1161.70014 |

[3] | Aidanpää, J. O.; Gupta, B. R., Periodic and chaotic behaviour of a threshold-limited two-degree-of-freedom system, Journal of Sound and Vibration, 165, 2, 305-327 (1993) · Zbl 0925.70283 |

[4] | Quinn, D. D.; Bairavarasu, K., Near-simultaneous impacts, International Journal of Impact Engineering, 32, 6, 889-904 (2006) |

[5] | Knudsen, J.; Massih, A. R., Dynamic stability of weakly damped oscillators with elastic impacts and wear, Journal of Sound and Vibration, 263, 1, 175-204 (2003) |

[6] | Luo, Albert C. J., Period-doubling induced chaotic motion in the LR model of a horizontal impact oscillator, Chaos, Solitons and Fractals, 19, 823-839 (2004) · Zbl 1135.37306 |

[7] | Dimentberg, M. F.; Iourtchenko, D. V., Stochastic and/or chaotic response of a vibration system to imperfectly periodic sinusoidal excitation, International Journal of Bifurcation and chaos, 15, 6, 2057-2061 (2005) |

[8] | de Souza, S. L.T; Caldas, I. L.; Viana, R. L., Basins of attraction changes by amplitude constraining of oscillators with limited power supply, Chaos, Solitons and Fractals, 26, 4, 1211-1220 (2005) · Zbl 1093.37516 |

[9] | Wagg, D. J., Multiple non-smooth events in multi-degree-of-freedom vibro-impact systems, Nonlinear Dynamics, 43, 1-2, 137-148 (2006) · Zbl 1138.70341 |

[10] | Luo, G. W., Hopf-flip bifurcations of vibratory systems with impacts, Nonlinear Analysis, Series B: Real World Applications, 7, 5, 1029-1041 (2006) · Zbl 1194.70035 |

[11] | Luo, G. W.; Zhang, Y. L.; Zhang, J. G., Codimension two bifurcations of fixed points in a class of vibratory systems with rigid stops, Nonlinear Analysis, Series B: Real World Applications, 8, 4, 1272-1292 (2007) · Zbl 1161.70014 |

[12] | Blazejczyk-Okolewska, B.; Czolczynski, K.; Kapitaniak, T., Determination of geometrical conditions of assembly and impacts in classified types of mechanical systems with impacts, European Journal of Mechanics, A-Solids, 24, 2, 277-291 (2005) · Zbl 1082.70011 |

[13] | Nordmark, A. B., Non-periodic motion caused by grazing incidence in an impact oscillator, Journal of Sound and Vibration, 145, 2, 279-297 (1991) |

[14] | Peterka, F.; Vacik, J., Transition to chaotic motion in mechanical systems with impacts, Journal of Sound and Vibration, 154, 95-115 (1992) · Zbl 0925.70280 |

[15] | Whiston, G. S., Singularities in virbo-impact dynamics, Journal of Sound and Vibration, 152, 3, 427-460 (1992) · Zbl 0925.70152 |

[16] | Foale, S.; Bishop, S. R., Dynamical complexities of forced impacting systems, Philosophical Transactions of the Royal Society of London, 338, A, 547-556 (1992) · Zbl 0748.70011 |

[17] | Ivanov, A. P., Stabilization of an impact oscillator near grazing incidence owing to resonance, Journal of Sound and Vibration, 162, 3, 562-565 (1993) · Zbl 0960.70511 |

[18] | Budd, C.; Dux, F.; Cliffe, A., The effect of frequency and clearance variations on single-degree-of-freedom impact oscillators, Journal of Sound and Vibration, 184, 3, 475-502 (1995) · Zbl 0982.70517 |

[19] | Ivanov, A. P., Bifurcation in impact systems, Chaos, Solitons and Fractal, 7, 10, 1615-1634 (1996) · Zbl 1080.37570 |

[20] | Di Bernardo, M.; Feigin, M. I.; Hogan, S. J.; Homer, M. E., Local analysis of C-bifurcations in N-dimensional piecewise-smooth dynamical systems, Chaos, Solitons and Fractals, 10, 11, 1881-1908 (1999) · Zbl 0967.37030 |

[21] | Murphy, K. D.; Morrison, T. M., Grazing instabilities and post-bifurcation behavior in an impacting string, Journal of the Acoustical Society of America, 111, 2, 884-892 (2002) |

[22] | Halse, C.; Homer, M.; Di Bernardo, M., C-bifurcations and period-adding in one-dimensional piecewise-smooth maps, Chaos, Solitons and Fractals, 18, 5, 953-976 (2003) · Zbl 1069.37033 |

[23] | Luo, Albert C. J.; Chen, L., Periodic motions and grazing in a harmonically forced, piecewise, linear oscillator with impacts, Chaos, Solitons and Fractals, 24, 2, 567-578 (2005) · Zbl 1135.70312 |

[24] | Luo, Albert C. J.; Gegg, Brandon C., Grazing phenomena in a periodically forced, friction-induced, linear oscillator, Communications in Nonlinear Science and Numerical Simulation, 11, 7, 777-802 (2006) · Zbl 1326.70039 |

[25] | Pavlovskaia, E. E.; Wiercigroch, M.; Woo, K. C.; Rodger, A. A., Modeling of ground moling dynamics by an impact oscillator with a frictional slider, Meccanica, 38, 85-97 (2003) · Zbl 1018.70503 |

[26] | Pavlovskaia, E. E.; Wiercigroch, M.; Grebogi, C., Two-dimensional map for impact oscillator with drift, Physical Review E, 70, 036201 (2004) |

[27] | Pavlovskaia, E. E.; Wiercigroch, M.; Grebogi, C., Modeling of an impact system with a drift, Physical Review E, 64, 056224 (2001) |

[28] | Wiercigroch, M.; Neilson, R. D.; Player, M. A., Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach, Physics Letters A, 259, 2, 91-96 (1999) |

[29] | de Souza, S. L.T.; Caldas, Ibere L., Calculation of Lyapunov exponents in systems with impacts, Chaos, Solitons and Fractals, 19, 3, 569-579 (2004) · Zbl 1085.70022 |

[30] | Peterka, F.; Kotera, T.; Čipera, S., Explanation of appearance and characteristics of intermittency chaos of the impact oscillator, Chaos, Solitons and Fractals, 19, 5, 1251-1259 (2004) · Zbl 1075.37536 |

[31] | Luo, Albert C. J., Grazing and chaos in a periodically forced, piecewise linear system, Journal of Vibration and Acoustics, 128, 28-34 (2006) |

[32] | Wagg, D. J., Rising phenomena and the multi-sliding bifurcation in a two-degree of freedom impact oscillator, Chaos, Solitons and Fractals, 22, 541-548 (2004) · Zbl 1116.70334 |

[33] | Wagg, D. J., Periodic sticking motion in a two-degree-of-freedom impact oscillator, International Journal of Non-Linear Mechanics, 40, 8, 1076-1087 (2005) · Zbl 1349.74283 |

[34] | Luo, Albert C. J.; Gegg, B. C., Stick and non-stick periodic motions in periodically forced oscillators with dry friction, Journal of Sound and Vibration, 291, 1-2, 132-168 (2006) · Zbl 1243.70025 |

[35] | Hu, H. Y., Controlling chaos of a periodically forced nonsmooth mechanical system, Acta Mechanica Sinica, 11, 3, 251-258 (1995) · Zbl 0855.70016 |

[36] | Hu, H. Y., Controlling chaos of a dynamical system with discontinuous vector field, Physica D, 106, 1, 1-8 (1997) · Zbl 0945.93558 |

[37] | Lee, J. Y.; Yan, J. J., Control of impact oscillator, Chaos, Solitons and Fractals, 28, 1, 136-142 (2006) · Zbl 1140.70475 |

[38] | de Souza, S. L.T.; Caldas, I. L., Controlling chaotic orbits in mechanical systems with impacts, Chaos, Solitons and Fractals, 19, 1, 171-178 (2004) · Zbl 1086.37045 |

[39] | de Souza, S. L.T.; Wiercigroch, M.; Caldas, I. L.; Balthazar, J. M., Suppressing grazing chaos in impacting system by structural nonlinearity, Chaos, Solitons and Fractals (2007) |

[40] | Zinjade, P. B.; Mallik, A. K., Impact damper for controlling friction-driven oscillations, Journal of Sound and Vibration, 306, 1-2, 238-251 (2007) |

[41] | Zhao, Wenli; Wang, Linze, Random Fatigue and Clearance Nonlinearity of Mechanical Vibrating Systems (2006), Science Publishing House: Science Publishing House Beijing, China · Zbl 1187.93044 |

[42] | Wiercigroch, M.; Sin, V. T.W., Experimental study of base excited symmetrically piecewise linear oscillator, ASME Journal of Applied Mechanics, 65, 3, 657 (1998) |

[43] | Meijaard, J. P.; de Pater, A. D., Railway vehicle systems dynamics and chaotic vibrations, International Journal of Non-Linear Mechanics, 24, 1, 1-17 (1989) · Zbl 0672.70030 |

[44] | Luo, G. W.; Yu, J. N.; Yao, H. M.; Xie, J. H., Periodic-impact motions and bifurcations of the vibratory system with a clearance, Chinese Journal of Mechanical Eengineering, 42, 88-94 (2006) |

[45] | Xie, J. H., The mathematical model for the impact hammer and global bifurcations, Acta Mechanica Sinica, 29, 4, 456-463 (1997) |

[46] | Luo, G. W.; Yao, H. M., Dynamics of a small vibro-impact pile driver, Nonlinear Analysis, Series B: Real World Applications (2007) · Zbl 1154.70335 |

[47] | Pavlovskaia, E. E.; Karpenko, E. V.; Wiercigroch, M., Non-linear dynamic interactions of a Jeffcott rotor with preloaded snubber ring, Journal of Sound and Vibration, 276, 361-379 (2004) |

[48] | Karpenko, E. V.; Wiercigroch, M.; Pavlovskaia, E. E.; Cartmell, M. P., Piecewise approximate analytical solutions for a Jeffcott rotor with a snubber ring, International Journal of Mechanical Sciences, 44, 3, 475-488 (2002) · Zbl 0993.70500 |

[49] | Karpenko, E. V.; Wiercigroch, M.; Pavlovskaia, E. E.; Neilson, R. D., Experimental verification of Jeffcott rotor model with preloaded snubber ring, Journal of Sound and Vibration, 298, 4-5, 907-917 (2006) |

[50] | Quinn, D. D., The dynamics of two parametrically excited pendula with impacts, International Journal of Bifurcation and Chaos, 15, 6, 1975-1988 (2005) · Zbl 1092.70515 |

[51] | Sung, C. K.; Yu, W. S., Dynamics of harmonically excited impact damper: Bifurcations and chaotic motion, Journal of Sound and Vibration, 158, 2, 317-329 (1992) · Zbl 0925.70282 |

[52] | Han, P. R.S.; Luo, A. C.J., Chaotic motion of a horizontal impact pair, Journal of Sound and Vibration, 181, 2, 231-250 (1995) · Zbl 1237.70028 |

[53] | Heiman, M. S.; Bajaj, A. K.; Sherman, P. J., Periodic motions and bifurcations in dynamics of an inclined impact pair, Journal of Sound and Vibration, 124, 1, 55-78 (1988) · Zbl 1235.70059 |

[54] | Bapat, C. N., The general motion of an inclined impact damper with friction, Journal of Sound and Vibration, 184, 3, 417-427 (1995) · Zbl 0982.70521 |

[55] | Duncan, M. R.; Wassgren, C. R.; Krousgrill, C. M., The damping performance of a single particle impact damper, Journal of Sound and Vibration, 286, 1-2, 123-144 (2005) |

[56] | Kahraman, A.; Singh, R., Non-linear dynamics of a geared rotor-bearing system with multiple clearances, Journal of Sound and Vibration, 144, 3, 469-506 (1991) |

[57] | Kunert, A.; Pfeiffer, F., Stochastic model for rattling in gear-boxes. Nonlinear dynamics in engineering system, (Schiehlen, W., Nonlinear Dynamics in Engineering Systems (1990), Springer-Verlag: Springer-Verlag Berlin, Heidelberg), 173-180 |

[58] | Blazejczyk-Okolewska, B.; Czolczynski, K.; Kapitaniak, T., European Journal of Mechanics A-Solids, 23, 3, 517-537 (2004) · Zbl 1060.70514 |

[59] | Di Benardo, M.; Champneys, A. R.; Budd, C. J., Grazing, skipping and sliding: analysis of the non-smooth dynamics of the dc/dc buck converter, Nonlinearity, 11, 4, 858-890 (1998) · Zbl 0904.34034 |

[60] | Di Bernardo, M.; Johansson, K. H.; Vasca, F., Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations, International Journal of Bifurcation and Chaos, 4, 11, 1121-1140 (2001) |

[61] | Luo, Albert C. J., On flow switching bifurcations in discontinuous dynamical systems, Communications in Nonlinear Science and Numerical Simulation, 12, 1, 100-116 (2007) · Zbl 1102.37014 |

[62] | Shaw, S. W., The dynamics of a harmonically excited system having rigid amplitude constraints. Part 1, Part 2, Journal of Applied Mechanics, 52, 453-464 (1985) |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.