zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pragmatical generalized synchronization of chaotic systems with uncertain parameters by adaptive control. (English) Zbl 1167.34357
Authors’ abstract: “A new kind of generalized synchronization of two chaotic systems with uncertain parameters is proposed. Based on a pragmatical asymptotical stability theorem and an assumption of equal probability for ergodic initial conditions, an adaptive control law is derived so that it can be proved strictly that the common null solution of error dynamics and of parameter dynamics is actually asymptotically stable, i.e., these two identical systems are in generalized synchronization and the estimated parameters approach the uncertain values. This is called pragmatical generalized synchronization. Finally, two numerical examples are studied for two quantum-CNN oscillator chaotic systems to show the effectiveness of the proposed generalized synchronization strategy with a double Duffing chaotic system as a goal system.”

34D05Asymptotic stability of ODE
93D21Adaptive or robust stabilization
34C15Nonlinear oscillations, coupled oscillators (ODE)
34C28Complex behavior, chaotic systems (ODE)
Full Text: DOI
[1] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic system. Phys. rev. Lett. 64, 821-824 (1990) · Zbl 0938.37019
[2] Wang, C.; Ge, S. S.: Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos solitons fractals 12, 1199-1206 (2001) · Zbl 1015.37052
[3] Femat, R.; Ramirez, J. A.; Anaya, G. F.: Adaptive synchronization of high-order chaotic systems: A feedback with low-order parameterization. Physica D 139, 231-246 (2000) · Zbl 0954.34037
[4] Morgul, O.; Feki, M.: A chaotic masking scheme by using synchronized chaotic systems. Phys. lett. A 251, 169-176 (1999)
[5] Femat, R.; Perales, G. S.: On the chaos synchronization phenomenon. Phys. lett. A 262, 50-60 (1999) · Zbl 0936.37010
[6] Abarbaned, H. D. I.; Rulkov, N. F.; Sushchik, M. M.: Generalized synchronization of chaos: the auxiliary systems. Phys. rev. E 53, 4528-4535 (1996)
[7] Yang, S. S.; Duan, C. K.: Generalized synchronization in chaotic systems. Chaos solitons fractals 9, 1703-1707 (1998) · Zbl 0946.34040
[8] Yang, X. S.: Concepts of synchronization in dynamic systems. Phys. lett. A 260, 340-344 (1999) · Zbl 0939.34041
[9] Yang, X. S.: A framework for synchronization theory. Chaos solitons fractals 11, 1365-1368 (2000) · Zbl 0999.34053
[10] Chen, M. -Y.; Han, Z. -Z.; Shang, Y.: General synchronization of Genesio--Tesi system. Internat. J. Bifur. chaos 14, No. 1, 347-354 (2004) · Zbl 1085.93023
[11] Chen, S.; Zhang, Q.; Xie, J.; Wang, C.: A stable-manifold-based method for chaos control and synchronization. Chaos solitons fractals 20, No. 5, 947-954 (2004) · Zbl 1050.93032
[12] Chen, S.; Lu, J.: Synchronization of uncertain unified chaotic system via adaptive control. Chaos solitons fractals 14, No. 4, 643-647 (2002) · Zbl 1005.93020
[13] Park, J. H.: Adaptive synchronization of hyperchaotic Chen system with uncertain parameters. Chaos solitons fractals 26, 959-964 (2005) · Zbl 1093.93537
[14] Park, J. H.: Adaptive synchronization of Rössler system with uncertain parameters. Chaos solitons fractals 25, 333-338 (2005) · Zbl 1125.93470
[15] Elabbasy, E. M.; Agiza, H. N.; El-Desoky, M. M.: Adaptive synchronization of a hyperchaotic system with uncertain parameter. Chaos solitons fractals 30, 1133-1142 (2006) · Zbl 1142.37325
[16] Ge, Z. -M.; Yu, J. -K.; Chen, Y. -T.: Pragmatical asymptotical stability theorem with application to satellite system. Jpn. J. Appl. phys. 38, 6178-6179 (1999)
[17] Ge, Z. -M.; Yu, J. -K.: Pragmatical asymptotical stability theorem on partial region and for partial variable with applications to gyroscopic systems. Chin. J. Mech. 16, No. 4, 179-187 (2000)
[18] Ge, Z. -M.; Chang, C. -M.: Chaos synchronization and parameters identification of single time scale brushless DC motors. Chaos solitons fractals 20, 883-903 (2004) · Zbl 1071.34048
[19] Ge, Z. -M.; Chen, C. -C.: Phase synchronization of coupled chaotic multiple time scales systems. Chaos solitons fractals 20, 639-647 (2004) · Zbl 1069.34056
[20] Ge, Z. -M.; Leu, W. -Y.: Chaos synchronization and parameter identification for identical system. Chaos solitons fractals 21, 1231-1247 (2004) · Zbl 1060.93523
[21] Ge, Z. -M.; Leu, W. -Y.: Anti-control of chaos of two-degrees-of-freedom louderspeaker system and chaos synchronization of different order systems. Chaos solitons fractals 20, 503-521 (2004) · Zbl 1048.37077
[22] Ge, Z. -M.; Chen, Y. -S.: Synchronization of unidirectional coupled chaotic systems via partial stability. Chaos solitons fractals 21, 101-111 (2004) · Zbl 1048.37027
[23] Liu, F.; Ren, Y.; Shan, X.; Qiu, Z.: A linear feedback synchronization theorem for a class of chaotic systems. Chaos solitons fractals 13, No. 4, 723-730 (2002) · Zbl 1032.34045
[24] Lü, J.; Zhou, T.; Zhang, S.: Chaos synchronization between linearly coupled chaotic systems. Chaos solitons fractals 14, No. 4, 529-541 (2002) · Zbl 1067.37043
[25] Krawiecki, A.; Sukiennicki, A.: Generalizations of the concept of marginal synchronization of chaos. Chaos solitons fractals 11, No. 9, 1445-1458 (2000) · Zbl 0982.37022
[26] Lu, J.; Xi, Y.: Linear generalized synchronization of continuous-time chaotic systems. Chaos solitons fractals 17, 825-831 (2003) · Zbl 1043.93518
[27] Xue, Y. -J.; Yang, S. -Y.: Synchronization of generalized henon map by using adaptive fuzzy controller. Chaos solitons fractals 17, 717-722 (2003) · Zbl 1043.93519
[28] Yang, X. -S.; Chen, G.: Some observer-based criteria for discrete-time generalized chaos synchronization. Chaos solitons fractals 13, 1303-1308 (2002) · Zbl 1006.93580
[29] Terry, J. R.; Van Wiggeren, G. D.: Chaotic communication using generalized synchronization. Chaos solitons fractals 12, 145-152 (2001)
[30] Yang, S. S.; Duan, C. K.: Generalized synchronization in chaotic systems. Chaos solitons fractals 9, 1703-1707 (1998) · Zbl 0946.34040
[31] Z.-M. Ge, C.-H. Yang, Synchronization of complex chaotic systems in series expansion form, Chaos Solitons Fractals (2006) (in press)
[32] Ge, Z. -M.; Yang, C. -H.; Chen, H. -H.; Lee, S. -C.: Non-linear dynamics and chaos control of a physical pendulum with vibrating and rotation support. J. sound vibration 242, No. 2, 247-264 (2001)
[33] Fortuna, L.; Porto, D.: Quantum-CNN to generate nanoscale chaotic oscillator. Internat. J. Bifur. chaos 14, No. 3, 1085-1089 (2004) · Zbl 1086.37503
[34] Matsushima, Y.: Differentiable manifolds. (1972) · Zbl 0233.58001