zbMATH — the first resource for mathematics

WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity. (English) Zbl 1167.35328
Summary: We consider the semi-classical limit for the Gross-Pitaevskii equation. In order to consider non-trivial boundary conditions at infinity, we work in Zhidkov spaces rather than in Sobolev spaces. For the usual cubic nonlinearity, we obtain a point-wise description of the wave function as the Planck constant goes to zero, so long as no singularity appears in the limit system. For a cubic-quintic nonlinearity, we show that working with analytic data may be necessary and sufficient to obtain a similar result.

35C20 Asymptotic expansions of solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
37L50 Noncompact semigroups; dispersive equations; perturbations of infinite-dimensional dissipative dynamical systems
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
82D50 Statistical mechanical studies of superfluids
Full Text: DOI EuDML arXiv
[1] Abdullaev, F.Kh.; Gammal, A.; Tomio, L.; Frederico, T., Stability of trapped bose – einstein condensates, Phys. rev. A, 63, 4, 043604, (2001)
[2] Alazard, T.; Carles, R., Semi-classical limit of schrödinger – poisson equations in space dimension \(n \geqslant 3\), J. differential equations, 233, 1, 241-275, (2007) · Zbl 1107.35018
[3] T. Alazard, R. Carles, Super-critical geometric optics for nonlinear Schrödinger equations, Preprint, arXiv:0704.2488
[4] R. Anton, Cubic nonlinear Schrödinger equation on three dimensional balls with radial data, Comm. Partial Differential Equations, in press
[5] Anton, R., Global existence for defocusing cubic NLS and gross – pitaevskii equations in exterior domains, J. math. pures appl., 89, 4, 335-354, (2008) · Zbl 1148.35081
[6] Bethuel, F.; Saut, J.-C., Travelling waves for the Gross-Pitaevskii equation. I, Ann. inst. H. Poincaré phys. théor., 70, 2, 147-238, (1999) · Zbl 0933.35177
[7] Brenier, Y., Convergence of the vlasov – poisson system to the incompressible Euler equations, Comm. partial differential equations, 25, 3-4, 737-754, (2000) · Zbl 0970.35110
[8] Carles, R., Geometric optics and instability for semi-classical Schrödinger equations, Arch. ration. mech. anal., 183, 3, 525-553, (2007) · Zbl 1134.35098
[9] Carles, R., WKB analysis for nonlinear Schrödinger equations with potential, Commun. math. phys., 269, 1, 195-221, (2007) · Zbl 1123.35062
[10] Colin, T.; Soyeur, A., Some singular limits for evolutionary ginzburg – landau equations, Asymptotic anal., 13, 4, 361-372, (1996) · Zbl 0885.35127
[11] Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S., Theory of bose – einstein condensation in trapped gases, Rev. mod. phys., 71, 3, 463-512, (1999)
[12] Gallo, C., Schrödinger group on zhidkov spaces, Adv. differential equations, 9, 5-6, 509-538, (2004) · Zbl 1103.35093
[13] C. Gallo, The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity, Preprint
[14] Gammal, A.; Frederico, T.; Tomio, L.; Chomaz, Ph., Atomic bose – einstein condensation with three-body interactions and collective excitations, J. phys. B, 33, 4053-4067, (2000)
[15] Gasser, I.; Lin, C.-K.; Markowich, P.A., A review of dispersive limits of (non)linear Schrödinger-type equations, Taiwanese J. math., 4, 4, 501-529, (2000) · Zbl 0972.35112
[16] P. Gérard, Remarques sur l’analyse semi-classique de l’équation de Schrödinger non linéaire, in: Séminaire sur les Équations aux Dérivées Partielles, 1992-1993, École polytech., Palaiseau, 1993, Exp. No. XIII
[17] Gérard, P., The Cauchy problem for the gross – pitaevskii equation, Ann. inst. H. Poincaré anal. non linéaire, 23, 5, 765-779, (2006) · Zbl 1122.35133
[18] Grenier, E., Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. amer. math. soc., 126, 2, 523-530, (1998) · Zbl 0910.35115
[19] Josserand, C.; Pomeau, Y., Nonlinear aspects of the theory of bose – einstein condensates, Nonlinearity, 14, 5, R25-R62, (2001) · Zbl 1037.82031
[20] Lannes, D., Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators, J. funct. anal., 232, 2, 495-539, (2006) · Zbl 1099.35191
[21] Lin, F.; Zhang, P., Semiclassical limit of the gross – pitaevskii equation in an exterior domain, Arch. rational mech. anal., 179, 1, 79-107, (2006) · Zbl 1079.76016
[22] Majda, A., Compressible fluid flow and systems of conservation laws in several space variables, Applied mathematical sciences, vol. 53, (1984), Springer-Verlag New York · Zbl 0537.76001
[23] Métivier, G., Remarks on the well-posedness of the nonlinear Cauchy problem, (), 337-356 · Zbl 1071.35074
[24] Michinel, H.; Campo-Táboas, J.; García-Fernández, R.; Salgueiro, J.R.; Quiroga-Teixeiro, M.L., Liquid light condensates, Phys. rev. E, 65, 066604, (2002)
[25] Pitaevskii, L.; Stringari, S., Bose – einstein condensation, International series of monographs on physics, vol. 116, (2003), The Clarendon Press, Oxford University Press Oxford · Zbl 1110.82002
[26] Sideris, T., Formation of singularities in three-dimensional compressible fluids, Commun. math. phys., 101, 475-485, (1985) · Zbl 0606.76088
[27] Taylor, M., Partial differential equations. III, nonlinear equations, Applied mathematical sciences, vol. 117, (1997), Springer-Verlag New York
[28] Thomann, L., Instabilities for supercritical Schrödinger equations in analytic manifolds, J. differential equations, 245, 1, 249-280, (2008) · Zbl 1157.35107
[29] P.E. Zhidkov, The Cauchy problem for a nonlinear Schrödinger equation, JINR Commun., P5-87-373, Dubna, 1987 (in Russian)
[30] Zhidkov, P.E., Korteweg – de Vries and nonlinear Schrödinger equations: qualitative theory, Lecture notes in mathematics, vol. 1756, (2001), Springer-Verlag Berlin · Zbl 0987.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.