zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Large solutions for an elliptic system of competitive type: existence, uniqueness and asymptotic behavior. (English) Zbl 1167.35373
Summary: This paper deals with the existence, uniqueness and asymptotic behavior of boundary blow-up solutions for an elliptic system of competitive type, where the weight functions $a(x), b(x)$ vanish on the boundary of the underlying domain at different rates according to the point of the boundary. The proof relies on subsolutions and supersolutions, and the localization method.

35J60Nonlinear elliptic equations
35B25Singular perturbations (PDE)
35B50Maximum principles (PDE)
Full Text: DOI
[1] Gómez, J. L.: Optimal uniqueness theorems and exact blow-up rates of large solutions. J. differential equations 224, 385-439 (2006) · Zbl 1208.35036
[2] Gómez, J. L.: The boundary blow-up rate of large solutions. J. differential equations 195, 25-45 (2003) · Zbl 1130.35329
[3] Du, Y.: Asymptotic behaviour and uniqueness results for boundary blow-up solutions. Diff. int. Eqns 17, 819-834 (2004) · Zbl 1150.35369
[4] Cîrstea, F.; Du, Y.: General uniqueness results and variation speed for blow-up solutions of elliptic equations. Proc. London math. Soc. 91, 459-482 (2005) · Zbl 1108.35068
[5] Cîrstea, F.; Ra\check{}dulescu, V.: Entire solutions blowing up at infinity for semilinear elliptic systems. J. math. Pures appl. 81, 827-846 (2002) · Zbl 1112.35063
[6] Lair, A. V.; Wood, A. W.: Large solutions of semilinear elliptic problems. Nonlinear anal. 37, 805-812 (1999) · Zbl 0932.35081
[7] Lazer, A. C.; Mckenna, P. J.: Asymptotic behaviour of solutions of boundary blow-up problems. Diff. int. Eqns 7, 1001-1019 (1994) · Zbl 0811.35010
[8] Marcus, M.; Veron, L.: Uniqueness of solutions with blowup on the boundary for a class of nonlinear elliptic equations. C, R. Acad. sci. Paris ser. I. 317, 557-563 (1993)
[9] Mckenna, P.; Reichel, L.; Walter, W.: Symmetry and multiplicity for nonlinear elliptic differential equations with boundary blow-up. Nonlinear anal. 28, 1213-1225 (1997) · Zbl 0868.35031
[10] Melián, J. G.: A remark on the existence of positive large solutions via sub and supersolutions. Electron J. Differential equations, 1-4 (2003) · Zbl 1040.35026
[11] Rademacher, H.: Einige besondere probleme partieller differential gleichungen. Die differential-und-gleichungen der mechanik I, 838-845 (1943)
[12] Yang, Z. D.; Xu, B.; Wu, M. Z.: Existence of positive boundary blow-up solutions for quasilinear elliptic equations via sub and supersolutions. Appl. math. Comput. 188, 492-498 (2007) · Zbl 1137.35371
[13] Yang, Z. D.: Existence of explosive positive solutions of quasilinear elliptic equations. Appl. math. Comput. 177, 581-588 (2006) · Zbl 1254.35085
[14] Zhang, Z. J.: A remark on the existence of explosive solutions for a class of semilinear elliptic equations. Nonlinear anal. 41, 143-148 (2000) · Zbl 0964.35053
[15] Melián, J. G.; Rossi, J. D.: Boundary blow-up solutions to elliptic systems of competitive type. J. differential equations 206, 156-181 (2004) · Zbl 1162.35359
[16] Melián, J. G.: A remark on uniqueness of large solutions for elliptic systems of competitive type. J. math. Anal. appl. 331, 608-616 (2007) · Zbl 1131.35015
[17] S. Huang, Q. Tian, C. Mu, The properties of boundary blow-up solutions to elliptic systems of competitive type with singular weights, Chinese J. Engrg. Math., in press (in Chinese)
[18] Du, Y.: Effects of a degeneracy in the competition model, part II: Perturbation and dynamical behaviour. J. differential equations 181, 133-164 (2002) · Zbl 1042.35017
[19] Ghergu, M.; Ra\check{}dulescu, V.: Explosive solutions of semilinear elliptic systems with gradient term. Rev. R. Acad. cien. Serie A. Mat 97, 437-445 (2003)