zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Scattering problem for a system of nonlinear Klein-Gordon equations related to Dirac-Klein-Gordon equations. (English) Zbl 1167.35427
Summary: We prove the existence of a scattering operator for a system of nonlinear Klein-Gordon equations related to Dirac-Klein-Gordon equations in three space dimensions.

35P25Scattering theory (PDE)
35Q53KdV-like (Korteweg-de Vries) equations
35B45A priori estimates for solutions of PDE
Full Text: DOI
[1] Bachelot, A.: Problème de Cauchy global pour des systèmes de Dirac--Klein--Gordon. Ann. inst. H. Poincaré 48, 387-422 (1988) · Zbl 0672.35071
[2] Georgiev, V.: Global solution of the system of wave and Klein--Gordon equations. Math. Z. 203, 683-698 (1990) · Zbl 0671.35052
[3] Georgiev, V.: Decay estimates for the Klein--Gordon equation. Commun. partial differential equations 17, 1111-1139 (1992) · Zbl 0767.35068
[4] N. Hayashi, P.I. Naumkin, Scattering operator for the nonlinear Klein--Gordon equations, Commun. Contemp. Math. (in press) · Zbl 1182.35198
[5] Hayashi, N.; Naumkin, P. I.: Scattering operator for the nonlinear Klein--Gordon equations in higher space dimensions. J. differential equations 244, 188-199 (2008) · Zbl 1136.35079
[6] Hayashi, N.; Naumkin, P. I.; Wibowo, Ratno Bagus Edy: Nonlinear scattering for a system of nonlinear Klein--Gordon equations. J. math. Phys. 49, 103501 (2008)
[7] Hörmander, L.: Lectures on nonlinear hyperbolic differential equations. (1997) · Zbl 0881.35001
[8] Klainerman, S.: Global existence of small amplitude solutions to nonlinear Klein--Gordon equations in four space--time dimensions. Commun. pure appl. Math. 38, 631-641 (1985) · Zbl 0597.35100
[9] Marshall, B.; Strauss, W.; Wainger, S.: Lp-lq estimates for the Klein--Gordon equation. J. math. Pures appl. 59, 417-440 (1980) · Zbl 0457.47040
[10] Yajima, K.: Existence of solutions for Schrödinger evolution equations. Comm. math. Phys. 110, 415-426 (1987) · Zbl 0638.35036