zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller. (English) Zbl 1167.37329
Summary: This paper presents a systematic design procedure to synchronize two identical generalized Lorenz chaotic systems based on a sliding mode control. In contrast to the previous works, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation. A switching surface only including partial states is adopted to ensure the stability of the error dynamics in the sliding mode. Then an adaptive sliding mode controller (ASMC) is derived to guarantee the occurrence of the sliding motion even when the parameters of the drive and response generalized Lorenz systems are unknown. Last, an example is included to illustrate the results developed in this paper.

37D45Strange attractors, chaotic dynamics
34D05Asymptotic stability of ODE
37N35Dynamical systems in control
93C40Adaptive control systems
Full Text: DOI
[1] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems. Physical review letters 64, 821-824 (1990) · Zbl 0938.37019
[2] Diallo, O.; Koné, Y.: Melnikov analysis of chaos in a general epidemiological model. Nonlinear analysis: real world applications 8, No. 1, 20-26 (2007) · Zbl 1114.37050
[3] Alasty, A.; Shabani, R.: Chaotic motions and fractal basin boundaries in spring-pendulum system. Nonlinear analysis: real world applications 7, No. 1, 81-95 (2006) · Zbl 1168.70319
[4] Yau, H. T.: Synchronization and anti-synchronization coexist in two-degree-of-freedom dissipative gyroscope with nonlinear inputs. Nonlinear analysis: real world applications (2007)
[5] Feki, M.: An adaptive chaos synchronization scheme applied to secure communication. Chaos, solitons & fractals 18, 141-148 (2003) · Zbl 1048.93508
[6] Chen, M.; Zhou, D.; Shang, Y.: A new observer-based synchronization scheme for private communication. Chaos, solitons & fractals 24, 1025-1030 (2005) · Zbl 1069.94508
[7] Sun, J. T.; Zhang, Y. P.; Wu, Q. D.: Impulsive control for the stabilization and synchronization of Lorenz systems. Physics letters A 298, 153-160 (2002) · Zbl 0995.37021
[8] Chen, S. H.; Yang, Q.; Wang, C. P.: Impulsive control and synchronization of unified chaotic system. Chaos, solitons & fractals 20, 751-758 (2004) · Zbl 1050.93051
[9] Schmitz, R.: Use of chaotic dynamical systems in cryptography. Journal of the franklin institute 338, 429-441 (2001) · Zbl 0979.94038
[10] Efimov, D. V.: Dynamical adaptive synchronization. International journal of adaptive control and signal processing 20, 491-507 (2006) · Zbl 1134.93355
[11] Yu, X.; Song, Y.: Chaos synchronization via controlling partial state of chaotic systems. International journal of bifurcation and chaos 11, 1737-1741 (2001)
[12] Parma, G. G.; Menezes, B.; Braga, A. P.; Costa, A.: Sliding mode neural network control of an induction motor drive. International journal of adaptive control and signal processing 17, 501-508 (2003) · Zbl 1034.93046
[13] Yan, J. J.; Hung, M. L.; Chiang, T. Y.; Yang, Y. S.: Robust synchronization of chaotic systems via adaptive sliding mode control. Physics letters A 356, 220-225 (2006) · Zbl 1160.37352
[14] Chiang, T. Y.; Lin, J. S.; Liao, T. L.; Yan, J. J.: Anti-synchronization of uncertain unified chaotic systems with dead-zone nonlinearity. Nonlinear analysis (2007) · Zbl 1141.34030
[15] Yau, H. T.; Shieh, C. S.: Chaos synchronization using fuzzy logic controller. Nonlinear analysis: real world applications (2007)
[16] Tian, Y. P.; Yu, X.: Stabilizing unstable periodic orbits of chaotic systems via an optimal principle. Journal of the franklin institute 337, 771-779 (2000) · Zbl 0998.93034
[17] Guo, S. M.; Shieh, L. S.; Chen, G.; Lin, C. F.: Effective chaotic orbit tracker: a prediction-based digital redesign approach. IEEE transactions on circuits and systems I 47, 1557-1560 (2000)
[18] Wu, T.; Chen, M. S.: Chaos control of the modified Chua’s circuit system. Physica D 164, 53-58 (2002) · Zbl 1008.37017
[19] Zhang, J.; Li, C.; Zhang, H.; Yu, J.: Chaos synchronization using single variable feedback based on backstepping method. Chaos, solitons & fractals 21, 1183-1193 (2004) · Zbl 1129.93518
[20] Lü, J.; Chen, G.; Cheng, D. Z.; Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. International journal of bifurcation and chaos 12, 2917-2926 (2002) · Zbl 1043.37026
[21] Sun, Y. J.: Solution bounds of generalized Lorenz chaotic systems. Chaos, solitons & fractals (2007)
[22] Liao, X.; Xu, F.; Wang, P.; Yu, P.: Chaos control and synchronization for a special generalized Lorenz canonical system-the SM system. Chaos, solitons & fractals (2007) · Zbl 1197.37037
[23] Itkis, U.: Control system of variable structure. (1976)
[24] V.I. Utkin, Sliding mode and their application in variable structure systems, Mir Editors, Moscow, 1978
[25] Popov, V. M.: Hyperstability of control system. (1973) · Zbl 0276.93033
[26] Edwards, C.; Spurgeon, S. K.; Patton, R. J.: Sliding mode observers for fault detection and isolation. Automatica 36, 541-548 (2000) · Zbl 0968.93502
[27] Slotine, J. E.; Li, W.: Applied nonlinear control. (1990) · Zbl 0753.93036