×

Sharp exponential integrability for traces of monotone Sobolev functions. (English) Zbl 1167.46024

Summary: We answer a question posed by P. Poggi-Corradini and K. Rajala [J. Lond. Math. Soc., II. Ser. 76, No. 2, 531–544 (2007; Zbl 1135.30014)] on exponential integrability of functions of restricted \(n\)-energy. We use geometric methods to obtain a sharp exponential integrability result for boundary traces of monotone Sobolev functions defined on the unit ball.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
31C45 Other generalizations (nonlinear potential theory, etc.)

Citations:

Zbl 1135.30014

References:

[1] S.-Y. A. Chang and D. E. Marshall, On a sharp inequality concerning the Dirichlet integral , Amer. J. Math., 107 (5) (1985), 1015–1033. JSTOR: · Zbl 0578.30010 · doi:10.2307/2374345
[2] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. · Zbl 0804.28001
[3] B. Fuglede, Extremal length and functional completion , Acta Math., 98 (1957), 171–219. · Zbl 0079.27703 · doi:10.1007/BF02404474
[4] F. W. Gehring, Symmetrization of rings in space , Trans. Amer. Math. Soc., 101 (1961), 499–519. · Zbl 0104.30002 · doi:10.2307/1993475
[5] F. W. Gehring, Rings and quasiconformal mappings in space , Trans. Amer. Math. Soc., 103 (1962), 353–393. JSTOR: · Zbl 0113.05805 · doi:10.2307/1993834
[6] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1993. · Zbl 0780.31001
[7] J. Malý, D. Swanson, and W. P. Ziemer, The co-area formula for Sobolev mappings , Trans. Amer. Math. Soc., 355 (2) (2003), 477–492 (electronic). · Zbl 1034.46032 · doi:10.1090/S0002-9947-02-03091-X
[8] J. J. Manfredi, Weakly monotone functions , J. Geom. Anal., 4 (3) (1994), 393–402. · Zbl 0805.35013 · doi:10.1007/BF02921588
[9] D. E. Marshall, A new proof of a sharp inequality concerning the Dirichlet integral , Ark. Mat., 27 (1) (1989), 131–137. · Zbl 0692.30028 · doi:10.1007/BF02386365
[10] J. Moser, A sharp form of an inequality by N. Trudinger , Indiana Univ. Math. J., 20 , (1970/71), 1077–1092. · Zbl 0203.43701 · doi:10.1512/iumj.1971.20.20101
[11] G. D. Mostow, Quasi-conformal mappings in \(n\) -space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math., (34) (1968), 53–104. · Zbl 0189.09402 · doi:10.1007/BF02684590
[12] P. Poggi-Corradini and K. Rajala, An egg-yolk principle and exponential integrability for quasiregular mappings , J. London Math. Soc. (2), 76 (2) (2007), 531–544. · Zbl 1135.30014 · doi:10.1112/jlms/jdm078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.