Luo, Jiaowan; Taniguchi, Takeshi The existence and uniqueness for non-Lipschitz stochastic neutral delay evolution equations driven by Poisson jumps. (English) Zbl 1167.60336 Stoch. Dyn. 9, No. 1, 135-152 (2009). Summary: In this paper, we consider the existence and uniqueness of mild solutions to non-Lipschitz stochastic neutral delay evolution equations driven by Poisson jump processes:\[ \begin{cases} d[X(t)+f(t, X_t)]=[AX(t)+g(t,X_t)]\,dt +\int_U k(t,X(t-),y) q(dydt),\quad & t\geq 0,\\ X(s)=\varphi(s), & s (= [-r, 0],\;r>0\end{cases} \]with an initial function \(X(s) = \varphi(s)\), \(-r\leq s\leq 0\), where \(\varphi : [-r,0]\to H\) is a cadlag function with \(E[\sup_{r\leq \leq 0}|\varphi(s)|^2_H] <\infty\). Cited in 1 ReviewCited in 32 Documents MSC: 60H15 Stochastic partial differential equations (aspects of stochastic analysis) 60H20 Stochastic integral equations Keywords:non-Lipschitz condition; Poisson jump processes; stochastic neutral delay evolution equations PDF BibTeX XML Cite \textit{J. Luo} and \textit{T. Taniguchi}, Stoch. Dyn. 9, No. 1, 135--152 (2009; Zbl 1167.60336) Full Text: DOI References: [1] DOI: 10.1017/CBO9780511755323 · Zbl 1073.60002 [2] Barbu D., Czech. Math. J. 127 pp 87– [3] DOI: 10.1142/S0219493705001584 · Zbl 1082.60048 [4] DOI: 10.1016/j.spa.2007.01.003 · Zbl 1125.60066 [5] DOI: 10.1017/CBO9780511666223 [6] DOI: 10.1006/jmaa.1997.5875 · Zbl 0915.35110 [7] DOI: 10.1016/j.crma.2004.09.004 · Zbl 1058.60050 [8] DOI: 10.1016/j.spa.2007.06.009 · Zbl 1186.93070 [9] DOI: 10.1007/978-1-4612-5561-1 · Zbl 0516.47023 [10] DOI: 10.1016/0022-0396(92)90148-G · Zbl 0744.34052 [11] DOI: 10.1006/jdeq.2001.4073 · Zbl 1009.34074 [12] DOI: 10.1007/978-1-4612-4050-1 [13] DOI: 10.1080/07362990701420100 · Zbl 1144.60042 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.