zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new 4-point $C^{3}$ quaternary approximating subdivision scheme. (English) Zbl 1167.65342
Summary: A new 4-point $C^{3}$ quaternary approximating subdivision scheme with one shape parameter is proposed and analyzed. Its smoothness and approximation order are higher but support is smaller in comparison with the existing binary and ternary 4-point subdivision schemes.

65D18Computer graphics, image analysis, and computational geometry
Full Text: DOI EuDML
[1] N. Aspert, Non-linear subdivision of univariate signals and discrete surfaces, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2003.
[2] N. Dyn and D. Levin, “Subdivision schemes in geometric modelling,” in Acta Numerica, pp. 73-144, Cambridge University Press, Cambridge, UK, 2002. · Zbl 1105.65310 · doi:10.1017/S0962492902000028
[3] K. P. Ko, A Study on Subdivision Scheme-Draft, Dongseo University, Busan, South Korea, 2007.
[4] C. Beccari, G. Casciola, and L. Romani, “An interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control,” Computer Aided Geometric Design, vol. 24, no. 4, pp. 210-219, 2007. · Zbl 1171.65326 · doi:10.1016/j.cagd.2007.02.001
[5] C. Beccari, G. Casciola, and L. Romani, “A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics,” Computer Aided Geometric Design, vol. 24, no. 1, pp. 1-9, 2007. · Zbl 1171.65325 · doi:10.1016/j.cagd.2006.10.003
[6] N. Dyn, D. Levin, and J. A. Gregory, “A 4-point interpolatory subdivision scheme for curve design,” Computer Aided Geometric Design, vol. 4, no. 4, pp. 257-268, 1987. · Zbl 0638.65009 · doi:10.1016/0167-8396(87)90001-X
[7] N. Dyn, M. S. Floater, and K. Hormann, “A C2 four-point subdivision scheme with fourth order accuracy and its extensions,” in Mathematical Methods for Curves and Surfaces: Tromsø 2004, M. Daehlen, K. Morken, and L. L. Schumaker, Eds., Modern Methods in Mathematics, pp. 145-156, Nashboro Press, Brentwood, Tenn, USA, 2005. · Zbl 1080.65526
[8] M. F. Hassan, I. P. Ivrissimitzis, N. A. Dodgson, and M. A. Sabin, “An interpolating 4-point C2 ternary stationary subdivision scheme,” Computer Aided Geometric Design, vol. 19, no. 1, pp. 1-18, 2002. · Zbl 0984.68167 · doi:10.1016/S0167-8396(01)00084-X
[9] K. P. Ko, B.-G. Lee, and G. J. Yoon, “A ternary 4-point approximating subdivision scheme,” Applied Mathematics and Computation, vol. 190, no. 2, pp. 1563-1573, 2007. · Zbl 1144.65012 · doi:10.1016/j.amc.2007.02.032
[10] N. Dyn, “Interpolatory subdivision schemes and analysis of convergence & smoothness by the formalism of Laurent polynomials,” in Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak, and M. S. Floater, Eds., chapters 2-3, pp. 51-68, Springer, Berlin, Germany, 2002.
[11] O. Rioul, “Simple regularity criteria for subdivision schemes,” SIAM Journal on Mathematical Analysis, vol. 23, no. 6, pp. 1544-1576, 1992. · Zbl 0761.42016 · doi:10.1137/0523086
[12] M. Sabin, “Eigenanalysis and artifacts of subdivision curves and surfaces,” in Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak, and M. S. Floater, Eds., chapter 4, pp. 69-92, Springer, Berlin, Germany, 2002. · Zbl 1004.65025