×

Finite difference approximations for the fractional Fokker-Planck equation. (English) Zbl 1167.65419

Summary: The fractional Fokker-Planck equation has been used in many physical transport problems which take place under the influence of an external force field. In this paper we examine some practical numerical methods to solve a class of initial-boundary value problems for the fractional Fokker-Planck equation on a finite domain. The solvability, stability, consistency, and convergence of these methods are discussed. Their stability is proved by the energy method. Two numerical examples are also presented to evaluate these finite difference methods against the exact analytical solutions.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
35K55 Nonlinear parabolic equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Risken, H., The fokker – planck equation, (1989), Springer Berlin · Zbl 0665.60084
[2] Metzler, R.; Barkai, E.; Klafter, J., Anomalous diffusion and relaxation close to thermal equilibrium: a fractional fokker – planck equation approach, Phys. rev. lett., 82, 3563-3567, (1999)
[3] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. rep., 339, 1-77, (2000) · Zbl 0984.82032
[4] Metzler, R.; Klafter, J., The fractional fokker – planck equation, dispersive transport in an external field, J. mol. liq., 86, 219-228, (2000)
[5] Bouchaud, J.P.; Georges, A., Anomalous diffusion in disordered media, Phys. rep., 195, 127-293, (1990)
[6] Scher, H.; Shlesinger, M.F.; Bendler, J.T., Time-scale invariance in transport and relaxation, Phys. today, 44, 26-34, (1991)
[7] Klemm, A.; Müller, H.P.; Kimmich, R., Evaluation of fractal parameters of percolation model objects and natural porous media by means of NMR microscopy, Physica A., 266, 242-246, (1999)
[8] Amblard, F.; Maggs, A.C.; Yurke, B.; Pargellis, A.N.; Leibler, S., Subdiffusion and anomalous local viscoelasticity in actin networks, Phys. rev. lett., 77, 4470-4473, (1996)
[9] Pfister, G.; Scher, H., Dispersive (non-Gaussian) transient transport in disordered solids, Adv. phys., 27, 747-798, (1978)
[10] Gu, Q.; Schiff, E.A.; Grebner, S.; Wang, F.; Schwarz, R., Non-Gaussian transport measurements and the Einstein relation in amorphous silicon, Phys. rev. lett., 76, 3196-3199, (1996)
[11] Metzler, R.; Klafter, J., Lévy meets Boltzmann: strange initial conditions for Brownian and fractional fokker – planck equations, Physica A, 302, 290-296, (2001) · Zbl 0979.82050
[12] Sokolov, I.M.; Blumen, A.; Klafter, J., Linear response in complex systems: CTRW and the fractional fokker – planck equations, Physica A, 302, 268-278, (2001) · Zbl 0983.60040
[13] So, F.; Liu, K.L., A study of the subdiffusive fractional fokker – planck equation of bistable systems, Physica A, 331, 378-390, (2004)
[14] Hilfe, R., Applications of fractional calculus in physics, (1999), World Scientific Singapore
[15] Miller, K.S.; Ross, B., An introduction to the fractional calculus and fractional differential equations, (1993), Wiley New York · Zbl 0789.26002
[16] Oldham, K.B.; Spanier, J., The fractional calculus, (1974), Academic Press New York · Zbl 0428.26004
[17] Ross, B., Fractional calculus and its applications, Lecture notes in mathematics, vol. 457, (1975), Springer Berlin
[18] Yuste, S.B.; Acedo, L., An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. numer. anal., 42, 5, 1862-1874, (2005) · Zbl 1119.65379
[19] Langlands, T.A.M.; Henry, B.I., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. comput. phys., 205, 719-736, (2005) · Zbl 1072.65123
[20] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., New solution and analytical techniques of the implicit numerical method for the anomalous sub-diffusion equation, SIAM J. numer. anal., (2008) · Zbl 1173.26006
[21] Chen, C.; Liu, F.; Turner, I.; Anh, V., A Fourier method for the fractional diffusion equation describing sub-diffusion, J. comput. phys., 227, 886-897, (2007) · Zbl 1165.65053
[22] Liu, F.; Anh, V.; Turner, I., Numerical solution of space fractional fokker – planck equation, J. comput. appl. math., 166, 209-219, (2004) · Zbl 1036.82019
[23] Liu, F.; Anh, V.; Turner, I., Numerical simulation for solute transport in fractal porous media, Anziam j. (e), 45, 461-473, (2004) · Zbl 1123.76363
[24] Heinsalu, E.; Patriarca, M.; Goychuk, I.; Schmid, G.; Hänggi, P., Fractional fokker – planck dynamics: numerical algorithm and simulations, Phys. rev. E, 73, 046133, 1-9, (2006)
[25] Podlubny, I., Fractional differential equations, (1999), Academic Press New York · Zbl 0918.34010
[26] Hu, J.; Tang, H., Numerical methods for differential equations, (1999), Scientific Press China
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.