zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hall effect on the pipe flow of a Burgers’ fluid: An exact solution. (English) Zbl 1167.76310
Summary: An analysis is made to see the influences of Hall current on the flow of a Burgers’ fluid. The velocity field corresponding to the flow in a pipe is determined. The closed form analytical solutions for several Newtonian and non-Newtonian fluid models can be obtained from the present analysis as the limiting cases.

76A10Viscoelastic fluids
76A05Non-Newtonian fluids
74F10Fluid-solid interactions
Full Text: DOI
[1] Fetecau, C.; Fetecau, C.; Zierep, J.: Decay of a potential vortex and propagation of a heat wave in a second grade fluid. Int. J. Nonlinear mech. 37, 1051-1056 (2002) · Zbl 05138088
[2] Fetecau, C.; Fetecau, Corina: Starting solutions for some unsteady unidirectional flows of a second grade fluid. Int. J. Eng. sci. 43, 781-789 (2005) · Zbl 1211.76032
[3] Aksel, N.; Fetecau, C.; Scholle, M.: Starting solutions for some unsteady unidirectional flows of Oldroyd-B fluid. Z. angew, math. Phys. 57, 815-831 (2006) · Zbl 1101.76006
[4] Fetecau, C.; Hayat, T.; Fetecau, Corina: Steady-state solutions for some simple flows of generalized Burgers fluid. Int. J. Non-linear mech. 41, 880-887 (2006) · Zbl 1160.76343
[5] Yin, Y.; Zhu, K. Q.: Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model. Appl. math. Comput. 173, 231-242 (2006) · Zbl 1105.76009
[6] Tovar, C. A.; Cerdeirina, C. A.; Romani, L.; Prieto, B.; Carballo, J.: Viscoelastic behavior of arzua-ulloa cheese. J. texture stud. 34, 115-129 (2003)
[7] Wang, M. C.; Lee, K. Y.: Creep behavior of cement stabilized soils. Highway res. Record 442, 58-69 (1973)
[8] Majidzadeh, K.; Schweyer, H. E.: Viscoelastic response of asphalts in the vicinity of the Glass transition point. Assoc. asphalt paving technol. Proc. 36, 80-105 (1967)
[9] Gerritsen, A. H.; Van Grup, C. A. P.M.; Van Der Heide, J. P. J.; Molenaar, A. A. A.; Pronk, A. C.: Prediction and prevention of surface cracking in asphaltic pavements. Proceedings of the sixth international conference, structural design of asphalt pavements (1987)
[10] Hayat, T.; Khan, M.; Asghar, S.: Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid. Acta mech. 168, 213-232 (2004) · Zbl 1063.76108
[11] Cowling, T. G.: Magnetohydrodynamics. (1957) · Zbl 0081.21901
[12] Hayat, T.; Naz, R.; Asghar, S.: Hall effects on unsteady duct flow of a non-Newtonian fluid in a porous medium. Appl. math. Comput. 157, 103-114 (2004) · Zbl 1108.76084
[13] Hayat, T.; Nadeem, S.; Asghar, S.; Siddiqui, A. M.: Effects of Hall current on unsteady flow of a second grade fluid in a rotating system. Chem. eng. Comm. 192, 1272-1284 (2005)
[14] Hayat, T.; Wang, Y.; Hutter, K.: Hall effects on the unsteady hydromagnetic oscillating flow of a second grade fluid. Int. J. Non-linear mech. 39, 1027-1037 (2004) · Zbl 05138510
[15] Debnath, L.; Ray, S. C.; Chatterjee, A. K.: Effects of Hall current on unsteady hydromagnetic flow past a porous plate in a rotating fluid system. Z. angew. Math. mech. 59, 469-471 (1979) · Zbl 0437.76097