Block-iterative algorithms for solving convex feasibility problems in Hilbert and in Banach spaces. (English) Zbl 1167.90010

The authors establish some significant convergence theorems for two different block-iterative methods in order to solve the well known problem to identify the points in the intersection of fixed points sets from a finite class of nonexpansive mappings in Hilbert and finite dimensional Banach spaces.The paper is important for the adequate numerical methods in this field.


90C25 Convex programming
46N10 Applications of functional analysis in optimization, convex analysis, mathematical programming, economics
Full Text: DOI


[1] Aharoni, R.; Censor, Y., Block-iterative projection methods for parallel computation of solutions to convex feasibility problems, Linear Algebra Appl., 120, 165-175 (1989) · Zbl 0679.65046
[2] Bauschke, H. H.; Borwein, J. M., On projection algorithms for solving convex feasibility problems, SIAM Rev., 38, 367-426 (1996) · Zbl 0865.47039
[3] Bruck, R. E.; Reich, S., Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math., 3, 459-470 (1977) · Zbl 0383.47035
[4] Butnariu, D.; Davidi, R.; Herman, G. T.; Kazantsev, I. G., Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems, IEEE J. Selected Topics Signal Process., 1, 540-547 (2007)
[5] Censor, Y., Row-action methods for huge and sparse systems and their applications, SIAM Rev., 23, 444-466 (1981) · Zbl 0469.65037
[6] Censor, Y.; Zenios, S., Parallel Optimization: Theory, Algorithms, and Applications (1997), Oxford Univ. Press: Oxford Univ. Press New York · Zbl 0945.90064
[7] Cimmino, G., Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, Ric. Sci. (Roma), 9, 326-333 (1938) · JFM 64.1244.02
[8] Combettes, P. L.; Puh, H., A fast parallel projection algorithm for set theoretic image recovery, Proc. IEEE Internat. Conf. Acoust. Speech Signal Process., 5, 473-476 (1994)
[9] Combettes, P. L., Construction d’un point fixe commun à une famille de contractions fermes, C. R. Acad. Sci. Paris Sér. I, 320, 1385-1390 (1995) · Zbl 0830.65047
[10] Combettes, P. L., Hilbertian convex feasibility problem: Convergence of projection methods, Appl. Math. Optim., 35, 311-330 (1997) · Zbl 0872.90069
[11] Combettes, P. L., Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, 53, 475-504 (2004) · Zbl 1153.47305
[12] Goebel, K.; Reich, S., Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings (1984), Marcel Dekker: Marcel Dekker New York · Zbl 0537.46001
[13] Hetzelt, L., On suns and cosuns in finite-dimensional normed real vector spaces, Acta Math. Hungar., 45, 53-68 (1985) · Zbl 0592.41043
[14] Kaczmarz, S., Angenäherte Auflösung von Systemen linearer Gleichungen, Bull. Internat. Acad. Polon. Sci. Lett. Sér. A Sci. Math., 35, 355-357 (1937) · Zbl 0017.31703
[15] Reich, S., A limit theorem for projections, Linear Multilinear Algebra, 13, 281-290 (1983) · Zbl 0523.47040
[16] Reich, S.; Zaslavski, A. J., Attracting mappings in Banach and hyperbolic spaces, J. Math. Anal. Appl., 253, 250-268 (2001) · Zbl 0993.47039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.