zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotically optimal control for an assemble-to-order system with capacitated component production and fixed transport costs. (English) Zbl 1167.90492
Summary: This paper examines a two-tier assemble-to-order system. Customer orders for various products must be filled within the product-specific target lead time, or become lost sales. A product can be assembled instantaneously if its required components are in stock at the assembly facility. The production facility for each component is geographically distant from the assembly facility, and the transportation lead time is deterministic. Each shipment of components incurs a fixed cost and a variable cost per unit. The system manager must initially commit to the production capacity for each component. Then, in response to customer orders, he must dynamically manage production (expediting and salvaging) and shipping for each component, and the sequence of customer orders for assembly (how scarce components are allocated to outstanding orders). The objective is to minimize expected discounted costs for lost sales, production, and shipping. This discounted formulation accounts for financial inventory holding costs but not physical inventory holding costs. The main result is that as the order arrival rate for each product becomes large and the discount rate becomes small, a simple threshold policy with independent control of each component is asymptotically optimal. The policy is parameterized by five numbers for each component. Expressions for these parameters, the expected discounted cost, and the long-run average rates of salvaging and expediting are obtained by solving an approximating Brownian control problem. In a numerical example from the computer industry, the Brownian approximation is remarkably accurate.

90B30Production models
90B05Inventory, storage, reservoirs
93E20Optimal stochastic control (systems)
Full Text: DOI