×

Modulated exploratory dynamics can shape self-organized behavior. (English) Zbl 1167.93361

MSC:

93C40 Adaptive control/observation systems
37N25 Dynamical systems in biology
68T05 Learning and adaptive systems in artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.5962/bhl.title.6969
[2] DOI: 10.1177/105971230401200104
[3] Cannon W. B., The Wisdom of the Body (1939)
[4] DOI: 10.1016/j.neubiorev.2004.09.009
[5] DOI: 10.1177/105971230601400202
[6] R. Der, U. Steinmetz and F. Pasemann, Computational Intelligence for Modelling, Control, and Automation, Concurrent Systems Engineering Series 55 (IOS Press, Amsterdam, 1999) pp. 43–47.
[7] E. Di Paolo, Dynamical Systems Approach to Embodiment and Sociality, eds. K. Murase and T. Asakura (2003) pp. 19–42.
[8] DOI: 10.1007/s12064-001-0021-0
[9] Hebb D., The Organization of Behavior: A Neuropsychological Theory (1949)
[10] Kaelbling L. P., J. Artif. Intell. Res. 4 pp 237–
[11] DOI: 10.1007/s00422-006-0127-z · Zbl 1161.92323
[12] DOI: 10.1016/0921-8890(92)90004-I
[13] Sutton R. S., Reinforcement Learning: An Introduction (1998)
[14] Tamosiunaite M., J. Comp. Nsci. 25 pp 562–
[15] DOI: 10.1109/TSMCA.2003.809171
[16] Elizabeth P., Science 288 pp 83– · Zbl 1087.00003
[17] DOI: 10.1093/beheco/13.2.182
[18] DOI: 10.1126/science.288.5463.133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.