Basin, M.; Alcorta-Garcia, M. A.; Alanis-Duran, A. Optimal filtering for linear systems with state and multiple observation delays. (English) Zbl 1167.93400 Int. J. Syst. Sci. 39, No. 5, 547-555 (2008). Summary: This article solves the optimal filtering problem for linear systems with state and multiple observation delays. An optimal estimate equation similar to the traditional Kalman-Bucy one is derived, and the system of equations for determining the filter gain matrix consists of an infinite set of equations. It is then demonstrated that a finite set of the filtering equations can be obtained in case of commensurable delays. In the example, the designed optimal filter is compared to the traditional Kalman-Bucy filter. Cited in 10 Documents MSC: 93E11 Filtering in stochastic control theory 93C05 Linear systems in control theory 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 93E20 Optimal stochastic control Keywords:filtering; stochastic system; time-delay system PDF BibTeX XML Cite \textit{M. Basin} et al., Int. J. Syst. Sci. 39, No. 5, 547--555 (2008; Zbl 1167.93400) Full Text: DOI References: [1] Alexander HL, SPIE. Data Struct. Target Classification 1470 (1991) [2] Åström KJ, Introduction to Stochastic Control Theory (1970) [3] DOI: 10.1002/rnc.1014 · Zbl 1086.93058 [4] DOI: 10.1002/rnc.917 · Zbl 1057.93055 [5] DOI: 10.1109/TAC.2005.846599 · Zbl 1365.93496 [6] Boukas E-K, Deterministic and Stochastic Time-Delayed Systems (2002) [7] Boukas EK, Int. J. Innovative Comput., Inform. Control 2 pp 283– (2006) [8] Chen B, Int. J. Innov. Comput., Inform. Control 2 pp 293– (2006) [9] DOI: 10.1109/78.905882 · Zbl 1369.93667 [10] DOI: 10.1007/BFb0027478 · Zbl 0901.00019 [11] DOI: 10.1109/TSP.2005.851116 · Zbl 1370.93274 [12] DOI: 10.1115/1.1569950 [13] DOI: 10.1115/1.2802363 · Zbl 0866.93097 [14] Jazwinski AH, Stochastic Processes and Filtering Theory (1970) · Zbl 0203.50101 [15] Kalman RE, ASME Trans., Part D (J. of Basic Eng.) 83 pp 95– (1961) [16] Koivo HN, IEEE Trans. Syst., Man, and Cybernetics 4 pp 275– (1974) [17] Kolmanovskii VB, Introduction to the Theory and Applications of Functional Differential Equations (1999) [18] Kolmanovskii VB, Control of Systems with Aftereffect (1996) [19] DOI: 10.1109/TAC.1974.1100503 · Zbl 0301.93066 [20] Larsen, TD, Andersen, NA, Ravn, O and Poulsen, NK. 1998. ”Incorporation of the time-delayed measurements in a discrete-time Kalman filter”. Proceedings of the 37th IEEE Conference on Decision and Control. 1998. pp.3972–3977. [21] Mahmoud MS, Robust Control and Filtering for Time-Delay Systems (2000) [22] DOI: 10.1109/TCSI.2002.807504 · Zbl 1368.93725 [23] Mahmoud MS, Int. J. Innov. Comput., Inform. Control 3 pp 407– (2007) [24] Malek-Zavarei M, Time-Delay Systems: Analysis, Optimization and Applications (1987) · Zbl 0658.93001 [25] Niculescu S-I, Delay Effects on Stability: A Robust Control Approach (2001) [26] Pugachev VS, Stochastic Systems: Theory and Applications (2001) [27] DOI: 10.1016/S0005-1098(03)00167-5 · Zbl 1145.93302 [28] DOI: 10.1109/TCSII.2004.842009 [29] DOI: 10.1109/9.701119 · Zbl 0951.93050 [30] DOI: 10.1016/j.sigpro.2005.05.005 · Zbl 1163.94387 [31] DOI: 10.1080/00207170210141815 · Zbl 1010.93101 [32] DOI: 10.1109/TAC.2006.874983 · Zbl 1366.93647 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.