×

On very high degrees. (English) Zbl 1168.03031

The aim of the paper is to prove the existence of a minimal pair superhigh r.e. degree.

MSC:

03D25 Recursively (computably) enumerable sets and degrees
68Q30 Algorithmic information theory (Kolmogorov complexity, etc.)
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] Algorithmic randomness and lowness 66 pp 1199– (2001)
[2] DOI: 10.1002/malq.19660120125 · Zbl 0181.30504
[3] Proceedings of the Twelfth Workshop of Logic, Language, Information and Computation (WoLLIC 2005), Electronic Lecture Notes in Theoretical Computer Science 143 pp 45– (2006)
[4] Proceedings of the 7th and 8th Asian Logic Conferences, World Scientific, Singapore pp 103– (2003)
[5] DOI: 10.1090/S0002-9939-07-08648-0 · Zbl 1128.03031
[6] Transactions of the American Mathematical Society 275 pp 599– (1983)
[7] Recursion theory and complexity 2 pp 81– (1997) · Zbl 0865.00036
[8] DOI: 10.1112/jlms/jdm041 · Zbl 1128.03036
[9] Almost everywhere domination 69 pp 914– (2004)
[10] DOI: 10.1016/j.apal.2003.07.001 · Zbl 1085.03031
[11] Uniform almost everywhere domination 71 pp 1057– (2006)
[12] DOI: 10.1016/0304-3975(76)90005-0 · Zbl 0328.02029
[13] Theoretical Computer Science · Zbl 0867.68002
[14] DOI: 10.1016/j.entcs.2006.08.005 · Zbl 1262.03062
[15] Computability and randomness (2006) · Zbl 1100.68042
[16] DOI: 10.1016/j.aim.2004.10.006 · Zbl 1141.03017
[17] Reals which compute little (2002)
[18] DOI: 10.1002/malq.200710012 · Zbl 1123.03040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.