×

zbMATH — the first resource for mathematics

Strict polynomial functors and coherent functors. (English) Zbl 1168.18001
The authors build an explicit link between Auslander’s coherent functors and Friedlander-Suslin’s strict polynomial functors. This comparison is stated in terms of recollements of abelian categories. The new setting obtained is applied to functor cohomology.

MSC:
18A25 Functor categories, comma categories
20J06 Cohomology of groups
20C20 Modular representations and characters
18E99 Categorical algebra
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Auslander, M.: Coherent Functors. Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), Springer, Berlin, 189–231 (1966)
[2] Chałupnik, M.: Extensions of strict polynomial functors. Ann. Sci. École Norm. Sup. (4) 38(5), 773–792 (2005) · Zbl 1089.20029
[3] Franjou, V., Pirashvili, T.: Comparison of abelian categories recollements. Doc. Math. 9, 41–56 (2004) · Zbl 1060.18008
[4] Fresse, B.: On the homotopy of simplicial algebras over an operad. Trans. Am. Math. Soc. 352(9), 4113–4141 (2000) · Zbl 0958.18005
[5] Franjou, V., Lannes, J., Schwartz, L.: Autour de la cohomologie de MacLane des corps finis. Invent. Math. 115(3), 513–538 (1994) · Zbl 0798.18009
[6] Franjou, V., Friedlander, E., Scorichenko, A., Suslin, A.: General linear and functor cohomology over finite fields. Ann. Math. 150(2), 663–728 (1999) · Zbl 0952.20035
[7] Friedlander, E., Suslin, A.: Cohomology of finite group schemes over a field. Invent. Math. 127(2), 209–270 (1997) · Zbl 0945.14028
[8] Green, J.A.: On three functors of M. Auslander’s. Comm. Algebra 15, 241–277 (1987) · Zbl 0612.16012
[9] Harsthorne, R.: Coherent functors. Adv. Math. 140(1), 44–94 (1998) · Zbl 0921.13010
[10] Kuhn, N.J.: Generic representations of the finite general linear groups and the Steenrod algebra. II. K-Theory 8(4), 395–428 (1994) · Zbl 0830.20065
[11] Kuhn, N.J.: A stratification of generic representation theory and generalized Schur algebras. K-Theory 26(1), 15–49 (2002) · Zbl 1039.20027
[12] MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5, ix+262pp. Springer, New York (1971) · Zbl 0705.18001
[13] Nastasescu, C., Torrecillas, B.: Colocalization on Grothendieck categories with applications to coalgebras. J. Algebra 185, 108–124 (1996) · Zbl 0863.18007
[14] Pirashvili, T.: Introduction to functor cohomology. In: Rational Representations, the Steenrod Algebra, and Functor Homology, Panor. Synthèses 16, Soc. Math. France, Paris (2003)
[15] Schur. I. Thesis: In: Gesammelte Abhandlungen, Band I, pp. 5–76. Springer, Berlin (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.