zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Positive solutions to singular multi-point dynamic eigenvalue problems with mixed derivatives. (English) Zbl 1168.34014
Summary: This paper considers a singular m-point dynamic eigenvalue problem on time scales $\Bbb T$: $$-(p(t)u^\Delta(t))^\nabla= \lambda f(t,u(t)), \quad t\in(0,1]\cap\Bbb T,$$ $$u(0)= \sum_{i=1}^{m-2} a_iu(\xi_i), \quad \gamma u(1)+\delta p(1)u^\Delta(1)= \sum_{i=1}^{m-2} b_ip(\xi_i)u^\Delta(\xi_i).$$ We allow $f(t,w)$ to be singular at $w=0$ and $t=0$. By constructing the Green’s function and studying its positivity, eigenvalue intervals in which there exist positive solutions of the above problem are obtained by making use of the fixed point index theory.

MSC:
34B18Positive solutions of nonlinear boundary value problems for ODE
34B16Singular nonlinear boundary value problems for ODE
34B10Nonlocal and multipoint boundary value problems for ODE
39A10Additive difference equations
WorldCat.org
Full Text: DOI
References:
[1] Anderson, D.; Ma, R.: Second-order n-point eigenvalue problems on time scales, Adv. difference equ. 2006 (2006) · Zbl 1133.39013 · doi:10.1155/ADE/2006/59572
[2] Asakawa, H.: Nonresonant singular two-point boundary value problems, Nonlinear anal. TMA 44, 791-809 (2001) · Zbl 0992.34011 · doi:10.1016/S0362-546X(99)00308-9
[3] Atici, F. M.; Guseinov, G. Sh.: On Green’s functions and positive solutions for boundary value problems on time scales, J. comput. Appl. math. 141, 75-99 (2002) · Zbl 1007.34025 · doi:10.1016/S0377-0427(01)00437-X
[4] Bohner, M.; Luo, H.: Singular second-order multipoint dynamic boundary value problems with mixed derivatives, Adv. difference equ. 2006 (2006) · Zbl 1139.39024 · doi:10.1155/ADE/2006/54989
[5] Bohner, M.; Peterson, A.: Dynamic equations on time scales: an introduction with applications, (2001) · Zbl 0978.39001
[6] , Advances in dynamic equations on time scales (2003) · Zbl 1025.34001
[7] Dacunha, J. J.; Davis, J. M.; Singh, P. K.: Existence results for singular three-point boundary value problems on time scales, J. math. Anal. appl. 295, 378-391 (2004) · Zbl 1069.34012 · doi:10.1016/j.jmaa.2004.02.049
[8] Eloe, P.: Singular nonlinear multipoint conjugate boundary value problems, Commun. appl. Anal. 2, 497-511 (1998) · Zbl 0903.34016
[9] Gatica, J. A.; Oliker, V.; Waltman, P.: Singular nonlinear boundary value problem for second-order ordinary differential equations, J. differential equations 79, 62-78 (1989) · Zbl 0685.34017 · doi:10.1016/0022-0396(89)90113-7
[10] Guo, D.: Nonlinear functional analysis, (2001)
[11] Henderson, J.; Yin, K. C.: Focal boundary value problems for singular ordinary differential equations, Adv. nonlin. Dyn. 5, 283-295 (1997) · Zbl 0974.34014
[12] Henderson, J.; Kaufmann, E. R.: Focal boundary value problems for singular difference equations, Comput. math. Appl. 36, 1-10 (1998) · Zbl 0933.39039 · doi:10.1016/S0898-1221(98)80004-7
[13] Hilger, S.: Analysis on measure chains -- a unified approach to continuous and discrete calculus, Results math. 18, 18-56 (1990) · Zbl 0722.39001
[14] S. Hilger, Ein Masskettenkalkuel mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universitaet Wuerzburg, 1988 · Zbl 0695.34001
[15] Liang, J.; Xiao, T.; Hao, Z.: Positive solutions of singular differential equations on measure chains, Comput. math. Appl. 49, 651-663 (2005) · Zbl 1085.34019 · doi:10.1016/j.camwa.2004.12.001
[16] Ma, R.; O’regan, D.: Solvability of singular second order m-point boundary value problems, J. math. Anal. appl. 301, 124-134 (2005) · Zbl 1062.34018 · doi:10.1016/j.jmaa.2004.07.009
[17] Wong, P. J. Y.; Agarwal, R. P.: On the existence of solutions of singular boundary value problems for higher order difference equations, Nonlinear anal. TMA 28, 277-287 (1997) · Zbl 0861.39002 · doi:10.1016/0362-546X(95)00151-K
[18] Zhang, Y.: Positive solutions of singular sublinear Emden--Fowler boundary value problems, J. math. Anal. appl. 185, 215-222 (1994) · Zbl 0823.34030 · doi:10.1006/jmaa.1994.1243
[19] Zhang, Z.; Wang, J.: The upper and lower solution method for a class of singular nonlinear second order three-point boundary value problems, J. comput. Appl. math. 147, 41-52 (2002) · Zbl 1019.34021 · doi:10.1016/S0377-0427(02)00390-4
[20] Zhang, Z.; Wang, J.: On existence and multiplicity of positive solutions to singular multi-point boundary value problems, J. math. Anal. appl. 295, 502-512 (2004) · Zbl 1056.34018 · doi:10.1016/j.jmaa.2004.03.057