Tao, Zhao-Ling Variational approach to the Benjamin Ono equation. (English) Zbl 1168.35304 Nonlinear Anal., Real World Appl. 10, No. 3, 1939-1941 (2009). Summary: Solitary solutions of the Benjamin Ono equation are studied via He’s variational method; the condition for existence of the solitary solutions is obtained. Cited in 5 Documents MSC: 35A25 Other special methods applied to PDEs 35Q51 Soliton equations 35A15 Variational methods applied to PDEs Keywords:He’s semi-inverse method; variational principle; Benjamin Ono equation PDF BibTeX XML Cite \textit{Z.-L. Tao}, Nonlinear Anal., Real World Appl. 10, No. 3, 1939--1941 (2009; Zbl 1168.35304) Full Text: DOI References: [1] Mari, M., On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation, Nonlinear Anal., 51, 1073-1085 (2002) · Zbl 1082.35135 [2] Wu, X. H.; He, J. H., Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method, Comput. Math. Appl., 54, 966-986 (2007) · Zbl 1143.35360 [3] He, J. H., Variational iteration method — Some recent results and new interpretations, J. Comput. Appl. Math., 207, 3-17 (2007) · Zbl 1119.65049 [4] Ozer, H., Application of the variational iteration method to the boundary value problems with jump discontinuities arising in solid mechanics, Int. J. Nonlinear Sci., 8, 513-518 (2007) [5] Tari, H.; Ganji, D. D.; Rostamian, M., Approximate solutions of K (2,2), KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method, Int. J. Nonlinear Sci., 8, 203-210 (2007) [6] Yusufoglu, E., Variational iteration method for construction of some compact and noncompact structures of Klein-Gordon equations, Int. J. Nonlinear Sci., 8, 153-158 (2007) [7] Biazar, J.; Ghazvini, H., Title: He’s variational iteration method for solving hyperbolic differential equations, Int. J. Nonlinear Sci., 8, 311-314 (2007) · Zbl 1193.65144 [8] Bildik, N.; Konuralp, A., The use of variational iteration method, differential transform method and adomian decomposition method for solving different types of nonlinear partial differential equations, Int. J. Nonlinear Sci., 7, 65-70 (2006) · Zbl 1401.35010 [9] Odibat, Z. M.; Momani, S., Application of variational iteration method to Nonlinear differential equations of fractional order, Int. J. Nonlinear Sci., 7, 27-34 (2006) · Zbl 1401.65087 [10] He, J. H., New interpretation of homotopy perturbation method, Internat J. Modern Phys. B, 20, 2561-2568 (2006) [11] Sadighi, A.; Ganji, D. D., Solution of the generalized nonlinear Boussinesq equation using homotopy perturbation and variational iteration methods, Int. J. Nonlinear Sci., 8, 435-443 (2007) [12] Shou, D. H.; He, J. H., Application of parameter-expanding method to strongly nonlinear oscillators, Int. J. Nonlinear Sci., 8, 121-124 (2007) [13] Gorji, M.; Ganji, D. D.; Soleimani, S., New application of He’s homotopy perturbation method, Int. J. Nonlinear Sci., 8, 319-328 (2007) [14] Ganji, D. D.; Sadighi, A., Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations, Int. J. Nonlinear Sci., 7, 411-418 (2006) [15] He, J. H.; Wu, X. H., Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30, 700-708 (2006) · Zbl 1141.35448 [16] Zhu, S. D., Exp-function method for the Hybrid-Lattice system, Int. J. Nonlinear Sci., 8, 461-464 (2007) [17] Zhu, S. D., Exp-function method for the discrete mKdV lattice, Int. J. Nonlinear Sci., 8, 465-468 (2007) [18] Bekir, A.; Boz, A., Exact solutions for a class of nonlinear partial differential equations using exp-function method, Int. J. Nonlinear Sci., 8, 505-512 (2007) [19] He, J. H., Some Asymptotic Methods for Strongly Nonlinear Equations, Internat J. Modern Phys. B, 20, 10, 1141-1199 (2006) · Zbl 1102.34039 [21] He, J. H., Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos Solitons Fractals, 19, 4, 847-851 (2004) · Zbl 1135.35303 [22] Tao, Z. L., Variational approach to the inviscid compressible fluid, Acta Appl. Math., 100, 291-294 (2008) · Zbl 1135.35305 [23] D’Acunto, M., Determination of limit cycles for a modified van der Pol oscillator, Mech. Res. Commun., 33, 1, 93-98 (2006) · Zbl 1192.70026 [24] D’Acunto, M., Self-excited systems: Analytical determination of limit cycles, Chaos Solitons Fractals, 30, 3, 719-724 (2006) · Zbl 1142.70010 [25] Öziş, T.; Yıldırım, A., Application of He’s semi-inverse method to the nonlinear Schrödinger equation, Comput. Math. Appl., 54, 1039-1042 (2007) · Zbl 1157.65465 [26] Zhang, J., Variational approach to solitary wave solution of the generalized Zakharov equation, Comput. Math. Appl., 54, 1043-1046 (2007) · Zbl 1141.65391 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.