# zbMATH — the first resource for mathematics

Existence and multiplicity of positive solutions for singular quasilinear problems. (English) Zbl 1168.35358
Summary: We combine perturbation arguments and variational methods to study the existence and multiplicity of positive solutions for a class of singular $$p$$-Laplacian problems $\begin{cases} -\Delta_ pu=a(x)u^ {-\gamma}+\lambda f(x,u)\quad &\text{ in }\Omega,\\ \quad u\in W_ {0}^ {1,p}(\Omega),\;u>0\quad &\text{ in }\Omega, \end{cases}\tag{1}$ where $$\Omega \subset \mathbb{R}^ {N}$$, $$N\geq 1$$, is a $$C^ {2}$$ bounded domain, $$1<p<\infty$$, $$\gamma >0$$ is a constant, $$\lambda >0$$ is a parameter, $$f$$ is a Carathéodory function and $$a\geq 0$$ is measurable and satisfies $$\varphi^ {-\gamma}a\in L^ q(\Omega)$$ for some $$q>N$$ and $$\varphi\in C_ 0^ 1(\overline{\Omega})$$, $$\varphi \geq 0$$.
In the first two theorems we prove the existence of solutions in the sense of distributions. By strengthening the hypotheses, in the third and last result, we establish the existence of two ordered positive weak solutions.

##### MSC:
 35J62 Quasilinear elliptic equations 35B32 Bifurcations in context of PDEs 35B09 Positive solutions to PDEs 35D30 Weak solutions to PDEs 35J20 Variational methods for second-order elliptic equations 47J30 Variational methods involving nonlinear operators
Full Text:
##### References:
 [1] Agarwal, R.P.; Lü, H.; O’Regan, D., Existence theorems for the one-dimensional singular p-Laplacian equation with sign changing nonlinearities, Appl. math. comput., 143, 1, 15-38, (2003) · Zbl 1031.34023 [2] R.P. Agarwal, K. Perera, D. O’Regan, A variational approach to singular quasilinear elliptic problems with sign changing nonlinearities, Appl. Anal., in press [3] Ambrosetti, A.; Rabinowitz, P.H., Dual variational methods in critical point theory and applications, J. funct. anal., 14, 349-381, (1973) · Zbl 0273.49063 [4] Brezis, H.; Nirenberg, L., $$H^1$$ versus $$C^1$$ local minimizers, C. R. acad. sci. Paris Sér. I math., 317, 5, 465-472, (1993) · Zbl 0803.35029 [5] Coclite, M.M.; Palmieri, G., On a singular nonlinear Dirichlet problem, Comm. partial differential equations, 14, 10, 1315-1327, (1989) · Zbl 0692.35047 [6] Crandall, M.G.; Rabinowitz, P.H.; Tartar, L., On a Dirichlet problem with a singular nonlinearity, Comm. partial differential equations, 2, 2, 193-222, (1977) · Zbl 0362.35031 [7] del Pino, M.A., A global estimate for the gradient in a singular elliptic boundary value problem, Proc. roy. soc. Edinburgh sect. A, 122, 3-4, 341-352, (1992) · Zbl 0791.35046 [8] Damascelli, L., Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. inst. H. Poincaré anal. non linéaire, 15, 4, 493-516, (1988) · Zbl 0911.35009 [9] Diaz, J.I.; Morel, J.-M.; Oswald, L., An elliptic equation with singular nonlinearity, Comm. partial differential equations, 12, 12, 1333-1344, (1987) · Zbl 0634.35031 [10] Edelson, A.L., Entire solutions of singular elliptic equations, J. math. anal. appl., 139, 2, 523-532, (1989) · Zbl 0679.35003 [11] Guo, Z.; Zhang, Z., $$W^{1, p}$$ versus $$C^1$$ local minimizers and multiplicity results for quasilinear elliptic equations, J. math. anal. appl., 286, 1, 32-50, (2003) · Zbl 1160.35382 [12] Kusano, T.; Swanson, C.A., Entire positive solutions of singular semilinear elliptic equations, Japan. J. math. (N.S.), 11, 1, 145-155, (1985) · Zbl 0585.35034 [13] Lair, A.V.; Shaker, A.W., Classical and weak solutions of a singular semilinear elliptic problem, J. math. anal. appl., 211, 2, 371-385, (1997) · Zbl 0880.35043 [14] Lazer, A.C.; McKenna, P.J., On a singular nonlinear elliptic boundary-value problem, Proc. amer. math. soc., 111, 3, 721-730, (1991) · Zbl 0727.35057 [15] Perera, K.; Zhang, Z., Multiple positive solutions of singular p-Laplacian problems by variational methods, Boundary value problems, 3, 377-382, (2005) · Zbl 1220.35082 [16] Rabinowitz, P.H., Minimax methods in critical point theory with applications to differential equations, CBMS reg. conf. ser. math., vol. 65, (1986), published for the Conference Board of the Mathematical Sciences Washington, DC · Zbl 0609.58002 [17] Shaker, A.W., On singular semilinear elliptic equations, J. math. anal. appl., 173, 1, 222-228, (1993) · Zbl 0785.35032 [18] Shi, J.; Yao, M., On a singular nonlinear semilinear elliptic problem, Proc. roy. soc. Edinburgh sect. A, 128, 6, 1389-1401, (1998) · Zbl 0919.35044 [19] Sun, Y.; Wu, S.; Long, Y., Combined effects of singular and superlinear nonlinearities in some singular boundary value problems, J. differential equations, 176, 2, 511-531, (2001) · Zbl 1109.35344 [20] Vázquez, J.L., A strong maximum principle for some quasilinear elliptic equations, Appl. math. optim., 12, 3, 191-202, (1984) · Zbl 0561.35003 [21] Wiegner, M., A degenerate diffusion equation with a nonlinear source term, Nonlinear anal., 28, 12, 1977-1995, (1997) · Zbl 0874.35061 [22] Zhang, Z., Critical points and positive solutions of singular elliptic boundary value problems, J. math. anal. appl., 302, 2, 476-483, (2005) · Zbl 1161.35403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.