×

zbMATH — the first resource for mathematics

Rolling Stiefel manifolds. (English) Zbl 1168.53007
Rolling maps and the corresponding kinematic equations are closely related to certain differential geometric constructions, i.e. to the so-called parallel transport of tangent vectors along arbitrary smooth curves on a manifold and therefore to the concept of geodesics. They also play an important role in certain optimal control and controllability problems. The present paper considers rolling maps for real Stiefel manifolds, which being the set of all orthonormal \(k\)-frames of an \(n\)-dimensional real Euclidean space are compact manifolds. They are considered as rigid bodies embedded in a suitable Euclidean space such that the corresponding Euclidean group acts on the body in the usual way. The kinematic equations describing this rolling motion are derived.

MSC:
53A17 Differential geometric aspects in kinematics
93B27 Geometric methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1137/S0036144500378648 · Zbl 0995.65037
[2] DOI: 10.1093/imanum/22.3.359 · Zbl 1056.92002
[3] Agrachev A, Control Theory from the Geometric Viewpoint (2004)
[4] DOI: 10.1007/b97376 · Zbl 1045.70001
[5] Bullo F, Geometric Control of Mechanical Systems (2005)
[6] Camarinha M, Ph.D. Thesis (1996)
[7] DOI: 10.1109/TSP.2005.855098 · Zbl 1373.62292
[8] DOI: 10.1023/A:1021770717822 · Zbl 0961.53027
[9] Crouch P, in Proceedings American Control Conference pp 1131– (1991)
[10] DOI: 10.1137/S0895479895290954 · Zbl 0928.65050
[11] DOI: 10.1007/BF00934767 · Zbl 0458.90060
[12] DOI: 10.1093/imamci/19.4.445 · Zbl 1138.58307
[13] DOI: 10.1007/s11263-006-0005-0 · Zbl 05186863
[14] DOI: 10.1109/TRA.2002.999643
[15] Helmke U, CCES (1994)
[16] Helmke U, Commun. Inf. Syst. 2 pp 283– (2002)
[17] Horn R, Topics in Matrix Analysis (1991)
[18] DOI: 10.1007/s10883-007-9027-3 · Zbl 1140.58005
[19] Jurdjevic V, Geometric Control Theory (1997)
[20] Jurdjevic V, 3rd Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control pp 137– (2006)
[21] Kleinsteuber M, 3rd Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control pp 143– (2006)
[22] DOI: 10.1023/A:1012276232049 · Zbl 0998.68197
[23] Marsh D, Applied Geometry for Computer Graphics and CAD (1999)
[24] Murray R, Robotic Manipulation (1994)
[25] DOI: 10.1093/imamci/6.4.465 · Zbl 0698.58018
[26] DOI: 10.1115/1.2826114
[27] Sharpe R, Differential Geometry (1996)
[28] DOI: 10.1109/TSP.2005.845428 · Zbl 1370.94242
[29] DOI: 10.1007/s00498-004-0143-2 · Zbl 1064.49021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.