zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Kernel dimension reduction in regression. (English) Zbl 1168.62049
Summary: We present a new methodology for sufficient dimension reduction (SDR). Our methodology derives directly from the formulation of SDR in terms of the conditional independence of the covariate $X$ from the response $Y$, given the projection of $X$ on the central subspace [cf. {\it K.-C. Li}, J. Am. Stat. Assoc. 86, No. 414, 316--342 (1991; Zbl 0742.62044); and “Regression graphics. Ideas for studying regressions through graphics.” New York: Wiley (1998; Zbl 0903.62001)]. We show that this conditional independence assertion can be characterized in terms of conditional covariance operators on reproducing kernel Hilbert spaces and we show how this characterization leads to an $M$-estimator for the central subspace. The resulting estimator is shown to be consistent under weak conditions; in particular, we do not have to impose linearity or ellipticity conditions of the kinds that are generally invoked for SDR methods. We also present empirical results showing that the new methodology is competitive in practice.

62H05Characterization and structure theory (Multivariate analysis)
46N30Applications of functional analysis in probability theory and statistics
62J99Linear statistical inference
62H99Multivariate analysis
62J02General nonlinear regression
65C60Computational problems in statistics
Full Text: DOI arXiv
[1] Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 337-404. JSTOR: · Zbl 0037.20701 · doi:10.2307/1990404 · http://links.jstor.org/sici?sici=0002-9947%28195005%2968%3A3%3C337%3ATORK%3E2.0.CO%3B2-H&origin=euclid
[2] Bach, F. R. and Jordan, M. I. (2002). Kernel independent component analysis. J. Mach. Learn. Res. 3 1-48. · Zbl 1088.68689 · doi:10.1162/153244303768966085
[3] Baker, C. R. (1973). Joint measures and cross-covariance operators. Trans. Amer. Math. Soc. 186 273-289. · Zbl 0304.28008 · doi:10.2307/1996566
[4] Breiman, L. and Friedman, J. H. (1985). Estimating optimal transformations for multiple regression and correlation. J. Amer. Statist. Assoc. 80 580-598. JSTOR: · Zbl 0594.62044 · doi:10.2307/2288473 · http://links.jstor.org/sici?sici=0162-1459%28198509%2980%3A391%3C580%3AEOTFMR%3E2.0.CO%3B2-2&origin=euclid
[5] Chiaromonte, F. and Cook, R. D. (2002). Sufficient dimension reduction and graphics in regression. Ann. Inst. Statist. Math. 54 768-795. · Zbl 1047.62066 · doi:10.1023/A:1022411301790
[6] Cook, R. D. (1998). Regression Graphics . Wiley, New York. · Zbl 0903.62001
[7] Cook, R. D. and Lee, H. (1999). Dimension reduction in regression with a binary response. J. Amer. Statist. Assoc. 94 1187-1200. JSTOR: · Zbl 1072.62619 · doi:10.2307/2669934 · http://links.jstor.org/sici?sici=0162-1459%28199912%2994%3A448%3C1187%3ADRIBRR%3E2.0.CO%3B2-3&origin=euclid
[8] Cook, R. D. and Li, B. (2002). Dimension reduction for conditional mean in regression. Ann. Statist. 30 455-474. · Zbl 1012.62035 · doi:10.1214/aos/1021379861
[9] Cook, R. D. and Weisberg, S. (1991). Discussion of Li. J. Amer. Statist. Assoc. 86 328-332.
[10] Cook, R. D. and Yin, X. (2001). Dimension reduction and visualization in discriminant analysis (with discussion). Aust. N. Z. J. Stat. 43 147-199. · Zbl 0992.62056 · doi:10.1111/1467-842X.00164
[11] Flury, B. and Riedwyl, H. (1988). Multivariate Statistics: A Practical Approach . Chapman and Hall, London. · Zbl 0495.62057
[12] Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. J. Amer. Statist. Assoc. 76 817-823. JSTOR: · doi:10.2307/2287576 · http://links.jstor.org/sici?sici=0162-1459%28198112%2976%3A376%3C817%3APPR%3E2.0.CO%3B2-1&origin=euclid
[13] Fukumizu, K., Bach, F. R. and Gretton, A. (2007). Statistical consistency of kernel canonical correlation analysis. J. Mach. Learn. Res. 8 361-383. · Zbl 1222.62063 · http://www.jmlr.org/papers/v8/fukumizu07a.html
[14] Fukumizu, K., Bach, F. R. and Jordan, M. I. (2004). Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. J. Mach. Learn. Res. 5 73-99. · Zbl 1222.62069 · http://www.jmlr.org/papers/v5/fukumizu04a.html
[15] Fukumizu, K., Gretton, A., Sun, X. and Schölkopf, B. (2008). Kernel measures of conditional dependence. In Advances in Neural Information Processing Systems 20 (J. Platt, D. Koller, Y. Singer and S. Roweis, eds.) 489-496. MIT Press, Cambridge, MA.
[16] Gretton, A., Bousquet, O., Smola, A. J. and Schölkopf, B. (2005). Measuring statistical dependence with Hilbert-Schmidt norms. In 16th International Conference on Algorithmic Learning Theory (S. Jain, H. U. Simon and E. Tomita, eds.) 63-77. Springer, Berlin. · Zbl 1168.62354 · doi:10.1007/11564089
[17] Groetsch, C. W. (1984). The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind . Pitman, Boston, MA. · Zbl 0545.65034
[18] Hristache, M., Juditsky, A., Polzehl, J. and Spokoiny, V. (2001). Structure adaptive approach for dimension reduction. Ann. Statist. 29 1537-1566. · Zbl 1043.62052
[19] Kobayashi, S. and Nomizu, K. (1963). Foundations of Differential Geometry , Vol. 1 . Wiley, New York. · Zbl 0119.37502
[20] Lax, P. D. (2002). Functional Analysis . Wiley, New York. · Zbl 1009.47001
[21] Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces . Springer, Berlin. · Zbl 0748.60004
[22] Li, B., Zha, H. and Chiaromonte, F. (2005). Contour regression: A general approach to dimension reduction. Ann. Statist. 33 1580-1616. · Zbl 1078.62033 · doi:10.1214/009053605000000192
[23] Li, K.-C. (1991). Sliced inverse regression for dimension reduction (with discussion). J. Amer. Statist. Assoc. 86 316-342. JSTOR: · Zbl 0742.62044 · doi:10.2307/2290563 · http://links.jstor.org/sici?sici=0162-1459%28199106%2986%3A414%3C316%3ASIRFDR%3E2.0.CO%3B2-V&origin=euclid
[24] Li, K.-C. (1992). On principal Hessian directions for data visualization and dimension reduction: Another application of Stein’s lemma. J. Amer. Statist. Assoc. 87 1025-1039. JSTOR: · Zbl 0765.62003 · doi:10.2307/2290640 · http://links.jstor.org/sici?sici=0162-1459%28199212%2987%3A420%3C1025%3AOPHDFD%3E2.0.CO%3B2-J&origin=euclid
[25] Pollard, D. (1984). Convergence of Stochastic Processes . Springer, New York. · Zbl 0544.60045
[26] Reed, M. and Simon, B. (1980). Functional Analysis . Academic Press, New York. · Zbl 0459.46001
[27] Samarov, A. M. (1993). Exploring regression structure using nonparametric functional estimation. J. Amer. Statist. Assoc. 88 836-847. JSTOR: · Zbl 0790.62035 · doi:10.2307/2290772 · http://links.jstor.org/sici?sici=0162-1459%28199309%2988%3A423%3C836%3AERSUNF%3E2.0.CO%3B2-5&origin=euclid
[28] Sriperumbudur, B., Gretton, A., Fukumizu, K., Lanckriet, G. and Schölkopf, B. (2008). Injective Hilbert space embeddings of probability measures. In Proceedings of the 21st Annual Conference on Learning Theory (COLT 2008) (R. A. Servedio and T. Zhang, eds.) 111-122. Omnipress, Madison, WI. · Zbl 1242.60005
[29] Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. JSTOR: · Zbl 0850.62538 · http://links.jstor.org/sici?sici=0035-9246%281996%2958%3A1%3C267%3ARSASVT%3E2.0.CO%3B2-G&origin=euclid
[30] Vakhania, N. N., Tarieladze, V. I. and Chobanyan, S. A. (1987). Probability Distributions on Banach Spaces . Reidel, Dordrecht. · Zbl 0698.60003
[31] van der Vaart, A. W. (1998). Asymptotic Statistics . Cambridge Univ. Press, Cambridge. · Zbl 0910.62001 · doi:10.1017/CBO9780511802256
[32] Wahba, G. (1990). Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics 59 . SIAM, Philadelphia, PA. · Zbl 0813.62001
[33] Xia, Y., Tong, H., Li, W. and Zhu, L.-X. (2002). An adaptive estimation of dimension reduction space. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 363-410. JSTOR: · Zbl 1091.62028 · doi:10.1111/1467-9868.03411 · http://links.jstor.org/sici?sici=1369-7412%282002%2964%3A3%3C363%3AAAEODR%3E2.0.CO%3B2-C&origin=euclid
[34] Yin, X. and Bura, E. (2006). Moment-based dimension reduction for multivariate response regression. J. Statist. Plann. Inference 136 3675-3688. · Zbl 1093.62058 · doi:10.1016/j.jspi.2005.01.011
[35] Yin, X. and Cook, R. D. (2005). Direction estimation in single-index regressions. Biometrika 92 371-384. · Zbl 1094.62054 · doi:10.1093/biomet/92.2.371
[36] Zhu, Y. and Zeng, P. (2006). Fourier methods for estimating the central subspace and the central mean subspace in regression. J. Amer. Statist. Assoc. 101 1638-1651. · Zbl 1171.62325 · doi:10.1198/016214506000000140