zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Collocation and iterated collocation methods for a class of weakly singular Volterra integral equations. (English) Zbl 1168.65073
The author investigates the convergence properties of spline collocation and iterated collocation methods for a weakly singular Volterra integral equation associated with certain heat conduction problems based on general polynomial spline functions by using the Gauss points as collocation points.

MSC:
65R20Integral equations (numerical methods)
45E10Integral equations of the convolution type
WorldCat.org
Full Text: DOI
References:
[1] Baratella, P.; Orsi, A. P.: A new approach to the numerical solution of weakly singular Volterra integral equations, J. comput. Appl. math. 163, 401-418 (2004) · Zbl 1038.65144 · doi:10.1016/j.cam.2003.08.047
[2] Bartoshevich, M. A.: On a heat conduction problem, Inz?.- fiz. Z?. 28, 340-346 (1975)
[3] Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes, Math. comp. 45, 417-437 (1985) · Zbl 0584.65093 · doi:10.2307/2008134
[4] Brunner, H.: Collocation methods for Volterra integral and related functional differential equations, (2004) · Zbl 1059.65122
[5] Brunner, H.: Nonpolynomial spline collocation for Volterra equations with weakly singular kernels, SIAM J. Numer. anal. 20, 1106-1119 (1983) · Zbl 0533.65087 · doi:10.1137/0720080
[6] Brunner, H.; Van Der Houwen, P. J.: The numerical solution of Volterra equations, (1986) · Zbl 0611.65092
[7] Brunner, H.; Nørsett, S.: Superconvergence of collocation methods for Volterra and Abel integral equations of the second kind, Numer. math. 36, 347-358 (1981) · Zbl 0442.65125 · doi:10.1007/BF01395951
[8] Brunner, H.; Pedas, A.; Vainikko, G.: The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations, Math. comp. 68, 1079-1095 (1999) · Zbl 0941.65136 · doi:10.1090/S0025-5718-99-01073-X
[9] Brunner, H.; Te Riele, H. J. J.: Volterra-type integral equations of the second kind with nonsmooth solutions: high order methods based on collocation techniques, J. integral equations 6, 187-203 (1984) · Zbl 0543.65091
[10] Diogo, T.; Franco, N. B.; Lima, P.: High order product integration methods for a Volterra integral equation with logarithmic singular kernel, Commun. pure appl. Anal. 3, 217-235 (2004) · Zbl 1066.65162 · doi:10.3934/cpaa.2004.3.217
[11] T. Diogo, P. Lima, Superconvergence properties of collocation methods for a class of weakly singular Volterra integral equations, J. Comput. Appl. Math. (in press), doi:10.1016/j.cam.2007.01.023 · Zbl 1146.65084
[12] Diogo, T.; Lima, P.; Rebelo, M.: Numerical solution of a nonlinear Abel type Volterra integral equation, Commun. pure appl. Anal. 5, 277-288 (2006) · Zbl 1133.65114 · doi:10.3934/cpaa.2006.5.277
[13] Diogo, T.; Mckee, S.; Tang, T.: A Hermite-type collocation method for the solution of an integral equation with a certain weakly singular kernel, IMA J. Numer. anal. 11, 595-605 (1991) · Zbl 0738.65096 · doi:10.1093/imanum/11.4.595
[14] Diogo, T.; Mckee, S.; Tang, T.: Collocation methods for second-kind Volterra integral equations with weakly singular kernels, Proc. roy. Soc. Edinburgh 124A, 199-210 (1994) · Zbl 0807.65141 · doi:10.1017/S0308210500028432
[15] Galperin, E. A.; Kansa, E. J.; Makroglou, A.; Nelson, S. A.: Variable transformations in the numerical solution of the second kind Volterra integral equations with continuous and weakly singular kernels; extension to Fredholm integral equations, J. comput. Appl. math. 115, 193-211 (2000) · Zbl 0958.65144 · doi:10.1016/S0377-0427(99)00297-6
[16] Gorenflo, R.; Vessella, S.: Abel integral equations, A historico-bibliographical survey, (1984)
[17] Han, W.: Existence, uniqueness and smoothness results for second-kind Volterra equations with weakly singular kernels, J. integral equations appl. 6, 365-384 (1994) · Zbl 0820.45003 · doi:10.1216/jiea/1181075819
[18] Lima, P. M.; Diogo, T.: An extrapolation method for a Volterra integral equation with weakly singular kernel, Appl. numer. Math. 24, 131-148 (1997) · Zbl 0878.65118 · doi:10.1016/S0168-9274(97)00016-0
[19] Norbury, J.; Stuart, A. M.: Volterra integral equations and a new Gronwall inequality (Part I: The linear case), Proc. roy. Soc. Edinburgh 106A, 361-373 (1987) · Zbl 0639.65075 · doi:10.1017/S0308210500018473
[20] Pedas, A.; Vainikko, G.: Smoothing transformation and piecewise polynomial collocation for weakly singular Volterra integral equations, Computing 73, 271-293 (2004) · Zbl 1063.65147 · doi:10.1007/s00607-004-0088-9
[21] Te Riele, H. J. J.: Collocation methods for weakly singular second-kind Volterra integral equations with non-smooth solution, IMA J. Numer. anal. 2, 437-449 (1982) · Zbl 0501.65062 · doi:10.1093/imanum/2.4.437
[22] Tang, T.: A note on collocation methods for Volterra integro-differential equations with weakly singular kernels, IMA J. Numer. math. 13, 93-99 (1993) · Zbl 0765.65126 · doi:10.1093/imanum/13.1.93