Dehghan, Mehdi; Shokri, Ali Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. (English) Zbl 1168.65398 J. Comput. Appl. Math. 230, No. 2, 400-410 (2009). Summary: The nonlinear Klein-Gordon equation is used to model many nonlinear phenomena. We propose a numerical scheme to solve the one-dimensional nonlinear Klein-Gordon equation with quadratic and cubic nonlinearity. Our scheme uses the collocation points and approximates the solution using thin plate splines radial basis functions. The implementation of the method is simple as finite difference methods. The results of numerical experiments are presented, and are compared with analytical solutions to confirm the good accuracy of the presented scheme. Cited in 1 ReviewCited in 153 Documents MSC: 65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs 35Q53 KdV equations (Korteweg-de Vries equations) Keywords:nonlinear Klein-Gordon equation; collocation; radial basis functions; thin plate splines PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{A. Shokri}, J. Comput. Appl. Math. 230, No. 2, 400--410 (2009; Zbl 1168.65398) Full Text: DOI OpenURL References: [1] Han, H.; Zhang, Z., Split local absorbing conditions for one-dimensional nonlinear klein – gordon equation on unbounded domain, J. comput. phys., 227, 8992-9004, (2008) · Zbl 1152.65092 [2] Wazwaz, A.M., New travelling wave solutions to the Boussinesq and the klein – gordon equations, Communications in nonlinear science and numerical simulation, 13, 889-901, (2008) · Zbl 1221.35372 [3] Sirendaoreji, Auxiliary equation method and new solutions of klein – gordon equations, Chaos solitons fractals, 31, 4, 943-950, (2007) · Zbl 1143.35341 [4] Sirendaoreji, A new auxiliary equation and exact travelling wave solutions of nonlinear equations, Phys. lett. A, 356, 2, 124-130, (2006) · Zbl 1160.35527 [5] Wazwaz, A.M., The tanh and the sine – cosine methods for compact and noncompact solutions of the nonlinear klein – gordon equation, Appl. math. comput., 167, 1179-1195, (2005) · Zbl 1082.65584 [6] El-Sayed, S.M., The decomposition method for studying the klein – gordon equation, Chaos solitons fractals, 18, 1025-1030, (2003) · Zbl 1068.35069 [7] Caudrey, P.J.; Eilbeck, I.C.; Gibbon, J.D., The sine-Gordon equation as a model classical field theory, Nuovo cimento, 25, 497-511, (1975) [8] Dodd, R.K.; Eilbeck, I.C.; Gibbon, J.D.; Morris, H.C., Solitons and nonlinear wave equations, (1982), Academic London · Zbl 0496.35001 [9] Parkes, E.J.; Duffy, B.R.; Abbott, P.C., The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations, Phys. lett. A, 295, 5-6, 280-286, (2002) · Zbl 1052.35143 [10] Fu, Z.T.; Liu, S.K.; Liu, S.D.; Zhao, Q., New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations, Phys. lett. A, 290, 1-2, 72-76, (2001) · Zbl 0977.35094 [11] Lynch, M.A.M., Large amplitude instability in finite difference approximations to the klein – gordon equation, Appl. numer. math., 31, 173-182, (1999) · Zbl 0937.65098 [12] Guo, B.Y.; Li, X.; Vazquez, L., A Legendre spectral method for solving the nonlinear klein – gordon equation, Math. appl. comput., 15, 1, 19-36, (1996) · Zbl 0856.65117 [13] Li, X.; Guo, B.Y., A Legendre spectral method for solving nonlinear klein – gordon equation, J. comput. math., 15, 2, 105-126, (1997) · Zbl 0876.65073 [14] Jiminez, S.; Vazquez, L., Analysis of four numerical schemes for a nonlinear klein – gordon equation, Appl. math. comput., 35, 61-94, (1990) · Zbl 0697.65090 [15] Dehghan, M., Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math. comput. simulation, 71, 16-30, (2006) · Zbl 1089.65085 [16] Liu, G.R.; Gu, Y.T., Boundary meshfree methods based on the boundary point methods, Eng. anal. bound. elem., 28, 475-487, (2004) · Zbl 1130.74466 [17] Kansa, E.J., Multiquadrics—A scattered data approximation scheme with applications to computational fluid dynamics-I, Comput. math. appl., 19, 127-145, (1990) · Zbl 0692.76003 [18] Zerroukat, M.; Power, H.; Chen, C.S., A numerical method for heat transfer problem using collocation and radial basis functions, Internat. J. numer. methods engrg., 42, 1263-1278, (1992) · Zbl 0907.65095 [19] Kansa, E.J., Multiquadrics—A scattered data approximation scheme with applications to computational fluid dynamics-II, Comput. math. appl., 19, 147-161, (1990) · Zbl 0850.76048 [20] Hon, Y.C.; Mao, X.Z., An efficient numerical scheme for Burgers equation, Appl. math. comput., 95, 1, 37-50, (1998) · Zbl 0943.65101 [21] Hon, Y.C.; Cheung, K.F.; Mao, X.Z.; Kansa, E.J., Multiquadric solution for shallow water equations, ASCE J. hydraul. eng., 125, 5, 524-533, (1999) [22] Hon, Y.C.; Mao, X.Z., A radial basis function method for solving options pricing model, Financ. eng., 8, 1, 31-49, (1999) [23] Marcozzi, M.; Choi, S.; Chen, C.S., On the use of boundary conditions for variational formulations arising in financial mathematics, Appl. math. comput., 124, 197-214, (2001) · Zbl 1047.91033 [24] Fasshauer, G.E., Solving partial differential equations by collocation with radial basis functions, (), 131-138 · Zbl 0938.65140 [25] Wendland, H., Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. comput. math., 4, 389-396, (1995) · Zbl 0838.41014 [26] Madych, W.R.; Nelson, S.A., Multivariate interpolation and conditionally positive definite functions II, Math. comput., 54, 189, 211-230, (1990) · Zbl 0859.41004 [27] Madych, W.R.; Nelson, S.A., Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation, J. approx. theory., 70, 94-114, (1992) · Zbl 0764.41003 [28] Franke, C.; Schaback, R., Convergence orders of meshless collocation methods using radial basis functions, Adv. comput. math., 8, 4, 381-399, (1997) · Zbl 0909.65088 [29] Franke, C.; Schaback, R., Solving partial differential equations by collocation using radial basis functions, Appl. math. comput., 93, 1, 73-82, (1998) · Zbl 0943.65133 [30] Hon, Y.C.; Wu, Z., Additive Schwarz domain decomposition with radial basis approximation, Int. J. appl. math., 4, 1, 599-606, (2000) · Zbl 1051.65121 [31] Wazwaz, A.M., The modified decomposition method for analytic treatment of differential equations, Appl. math. comput., 173, 165-176, (2006) · Zbl 1089.65112 [32] Kaya, D.; El-Sayed, S.M., A numerical solution of the klein – gordon equation and convergence of the decomposition method, Appl. math. comput., 156, 341-353, (2004) · Zbl 1084.65101 [33] Tatari, M.; Dehghan, M., On the solution of the non-local parabolic partial differential equations via radial basis functions, Appl. math. modelling, 33, 1729-1738, (2009) · Zbl 1168.65403 [34] Dehghan, M.; Tatari, M., The radial basis functions method for identifying an unknown parameter in a parabolic equation with overspecified data, Numer. methods partial differential equations, 23, 984-997, (2007) · Zbl 1128.65077 [35] Dehghan, M.; Shokri, A., A numerical method for KdV equation using collocation and radial basis functions, Nonlinear dynam., 50, 111-120, (2007) · Zbl 1185.76832 [36] Dehghan, M.; Shokri, A., A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions, Math. comput. simulation, 79, 700-715, (2008) · Zbl 1155.65379 [37] Shakeri, F.; Dehghan, M., Numerical solution of the Klein-Gordon equation via he’s variational iteration method, Nonlinear dynam., 51, 89-97, (2008) · Zbl 1179.81064 [38] Dehghan, M., A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications, Numer. methods partial differential equations, 22, 220-257, (2006) · Zbl 1084.65099 [39] Dehghan, M., On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numer. methods partial differential equations, 21, 24-40, (2005) · Zbl 1059.65072 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.