zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Improved coupling of finite shell elements and 3D boundary elements. (English) Zbl 1168.74452
Summary: A strategy for the mixed-dimensional coupling of finite shell elements and 3D boundary elements is presented. The stiffness formulation for the boundary element domain is generated by the 3D symmetric Galerkin boundary element method and thus can be assembled to the global finite element formulation. Based on the equality of work at the coupling interface, coupling equations in an integral sense are derived for curved coupling interfaces and formulated as multipoint constraints in terms of kinematic quantities. Several examples show the highly accurate results compared to a strict kinematic coupling technique.

74S05Finite element methods in solid mechanics
74S15Boundary element methods in solid mechanics
74K25Shells (solid mechanics)
Full Text: DOI
[1] ABAQUS Analysis User’s Manual, Version 6.4., ABAQUS. (2003)
[2] Bonnet M. (1995) Boundary Integral Equation Methods for Solids and Fluids. Wiley, Chichester
[3] Bonnet M. (1995) Regularized direct and indirect symmetric variational BIE formulations for three-dimensional elasticity. Eng. Anal. Bound. Elem. 15, 93--102 · doi:10.1016/0955-7997(95)00022-G
[4] Bonnet M., Maier G., Polizzotto C. (1998) Symmetric Galerkin boundary element methods. Appl. Mech. Rev. 51(11): 669--704 · doi:10.1115/1.3098983
[5] Costabel M. (1987). Symmetric methods for the coupling for finite elements and boundary elements. In: Brebbia C.A., Wendland W.L., Kuhn G. (eds). Boundary Elements IX, Vol. 1. Springer, Berlin Heidelberg New York
[6] Elleithy W.M., Al-Gahtani H.J. (2000) An overlapping domain decomposition approach for coupling the finite and boundary element methods. Eng. Anal. Bound. Elem. 24, 391--398 · Zbl 1118.76332 · doi:10.1016/S0955-7997(00)00014-X
[7] Elleithy, W.M., Tanaka, M. Interface relaxation algorithms for coupling the FEM and BEM. In: 24th World Conference on Boundary Element Method, BEM 24, pp. 721--730. Sinatra, Portugal (2002) · Zbl 1011.65083
[8] Flügge W. (1973) Stresses in Shells, 2nd edn. Springer, Berlin Heidelberg New York · Zbl 0257.73056
[9] Haas, M. Symmetrische Kopplung von Finite-Elemente-Schalenstrukturen mitder 3D-Randelementmethode. VDI, Düsseldorf (2004)
[10] Haas M., Kuhn G. (2002) A symmetric Galerkin BEM implementation for 3D elastostatic problems with an extension to curved elements. Comp. Mech.28(3--4): 250--259 · Zbl 1062.74059 · doi:10.1007/s00466-001-0285-8
[11] Haas, M., Kuhn, G. A general strategy for the mixed-dimensional, symmetric coupling of Gallego, R. Aliabadi, M.H. (eds)FEM and BEM. In: Advances in Boundary Element Techniques IV, Proceedings of the International Conference on Boundary Element Techniques IV, Granada, Spain, pp. 333--338 ISBN 0904188965, Granada (2003)
[12] Haas, M., Kuhn, G. Mixed-dimensional FEM/BEM coupling. In: Ren, Z., Kuhn, G., Skerget, L., Hribersek, M. (eds.) Advanced Computational Engineering Mechanics: Proceedings of the 1st Workshop, Maribor, Slovenia, 9--1 October 2003, pp. 91--100 Faculty of Mechanical Engineering, Maribor (2003) · Zbl 1054.74729
[13] Haas M., Kuhn G. (2003) Mixed-dimensional, symmetric coupling of FEM and BEM. Eng. Anal. Bound. Elem. 27: 575--582 · Zbl 1054.74729 · doi:10.1016/S0955-7997(03)00012-2
[14] Haas, M., Kuhn, G. Symmetric coupling for finite shell elements and 3d boundary elements. In: Brebbia, C.A., Poljak, D., Roje, V. (eds.) Boundary Elements XXV, Proceedings of the 25th International Conference on the Boundary Element Method BEM XXV, Split, Croatia, WITPress, Southhampton (2003) · Zbl 1054.74729
[15] Hartmann F. (1989) Introduction to Boundary Elements. Theory and Applications. Springer, Berlin Heidelberg New York · Zbl 0693.73054
[16] Helldörfer, B., Haas, M., Kuhn, G. Kopplung eines Finite Elemente Systems mit der Randelementmethode. Internal Report No 2004/1. Chair of Applied Mechanics, University of Erlangen-Nuremberg, Erlangen (2004) · Zbl 1168.74452
[17] Helldörfer, B., Kuhn, G. Coupled FEM/BEM analysis of fracture mechanical problems. In: Kuhn, G., Ren, Z., Skerget, L., Hribersek, M. (eds.) Advanced Computational Engineering Mechanics: Proceedings of the 2nd Workshop, Erlangen, Germany, 30 June--2 July 2005, pp. 63--72, Erlangen (2005)
[18] Holzer S.M. (1992) Das symmetrische Randelementverfahren: Numerische Realisierung und Kopplung mit der Finite-Elemente-Methode zur elastoplastischen Strukturanalyse. Technische Universität München, Munich
[19] Holzer S.M. (1994) A p-extension of the symmetric boundary element method. Comput. Methods Appl. Mech. Eng. 115, 339--357 · doi:10.1016/0045-7825(94)90066-3
[20] Kolk, K., Kuhn, G. A predictor-corrector scheme for the optimization of 3D crack front shapes. In: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/j.1460-2695.2004.00838.x (2004)
[21] McCune R.W., Armstrong C.G., Robinson D.J. (2000) Mixed-dimensional coupling in finite element models. Int. J. Numer. Methods Eng. 49, 725--750 · Zbl 0967.74067 · doi:10.1002/1097-0207(20001030)49:6<725::AID-NME967>3.0.CO;2-W
[22] Schaeffer H.G. (1984) MSC/NASTRAN Primer. Static and Normal Modes Analysis 4th edn. Schaeffer Analysis, Mount Vernon
[23] Shim, K.W., Monaghan, D.J., Armstrong, C.G. Mixed dimensional coupling in finite element stress analysis. In: 10th International Meshing Roundtable 2001, pp. 269--277, Sandia National Laboratories, Newport Beach, CA (2001)
[24] Sladek V., Sladek J. (1998). Introductory notes on singular integrals. In: Sladek V., Sladek J. (eds). Singular Integrals in Boundary Element Methods. Computational Mechanics Publications, Southampton, pp. 1--31 · Zbl 0961.74072
[25] Zienkiewicz O.C. (1979) The Finite Element Method 3rd edn. McGraw-Hill, London · Zbl 0435.73073