Torabi, S. A.; Hassini, E. An interactive possibilistic programming approach for multiple objective supply chain master planning. (English) Zbl 1168.90352 Fuzzy Sets Syst. 159, No. 2, 193-214 (2008). Summary: Providing an efficient production plan that integrates the procurement and distribution plans into a unified framework is critical to achieving competitive advantage. In this paper, we consider a supply chain master planning model consisting of multiple suppliers, one manufacturer and multiple distribution centers. We first propose a new multi-objective possibilistic mixed integer linear programming model (MOPMILP) for integrating procurement, production and distribution planning considering various conflicting objectives simultaneously as well as the imprecise nature of some critical parameters such as market demands, cost/time coefficients and capacity levels. Then, after applying appropriate strategies for converting this possibilistic model into an auxiliary crisp multi-objective linear model (MOLP), we propose a novel interactive fuzzy approach to solve this MOLP and finding a preferred compromise solution. The proposed model and solution method are validated through numerical tests. Computational results indicate that the proposed fuzzy method outperforms other fuzzy approaches and is very promising not only for solving our problem, but also for any MOLP model especially multi-objective mixed integer models. Cited in 55 Documents MSC: 90B06 Transportation, logistics and supply chain management 90C11 Mixed integer programming 90C70 Fuzzy and other nonstochastic uncertainty mathematical programming Keywords:possibilistic programming; supply chain master planning; mixed-integer linear programs; compromise solution PDF BibTeX XML Cite \textit{S. A. Torabi} and \textit{E. Hassini}, Fuzzy Sets Syst. 159, No. 2, 193--214 (2008; Zbl 1168.90352) Full Text: DOI References: [1] Abd El-Wahed, W. F.; Lee, S. M., Interactive fuzzy goal programming for multiobjective transportation problems, Omega: Internat. J. Manage. Sci., 34, 158-166 (2006) [2] Aissaoui, N.; Haouari, M.; Hassini, E., Supplier selection and order lot sizing modeling: a review, Comput. Oper. Res., 34, 12, 3516-3540 (2006) · Zbl 1128.90033 [3] Chan, F. T.S.; Chung, S. H.; Wadhwa, S., A hybrid genetic algorithm for production and distribution, Omega: Internat. J. Manage. Sci., 33, 345-355 (2005) [4] Chang, D. Y., Applications of the extent analysis method on fuzzy AHP, Eur. J. Oper. Res., 95, 3, 649-655 (1996) · Zbl 0926.91008 [5] Chen, S. P.; Chang, P. C., A mathematical programming approach to supply chain models with fuzzy parameters, Eng. Optim., 38, 6, 647-669 (2006) [6] Degraeve, Z.; Roodhooft, F., A mathematical programming approach for procurement using activity based costing, J. Business Finance & Accounting, 27, 1-2, 69-98 (2000) [7] Degraeve, Z.; Roodhooft, F.; van Doveren, B., The use of total cost of ownership for strategic procurement: a company-wide management information system, J. Oper. Res. Soc., 56, 51-59 (2005) · Zbl 1122.90365 [8] Elhedhli, S.; Goffin, J. L., Efficient production-distribution system design, Manage. Sci., 51, 7, 1151-1164 (2005) · Zbl 1232.90178 [9] Ghodsypour, S. H.; O’Brien, C., A decision support system for supplier selection using an integrated analytical hierarchy process and linear programming, Internat. J. Prod. Econom., 56-57, 199-212 (1998) [11] Hsu, H. M.; Wang, W. P., Possibilistic programming in production planning of assemble-to-order environments, Fuzzy Sets and Systems, 119, 59-70 (2001) [12] Hu, C. F.; Teng, C. J.; Li, S. Y., A fuzzy goal programming approach to multiobjective optimization problem with priorities, Eur. J. Oper. Res., 176, 1319-1333 (2007) · Zbl 1109.90070 [13] Inuiguchi, M.; Ramik, J., Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem, Fuzzy Sets and Systems, 111, 3-28 (2000) · Zbl 0938.90074 [15] Kumar, M.; Vrat, P.; Shankar, R., A fuzzy programming approach for vendor selection problem in a supply chain, Internat. J. Prod. Econom., 101, 273-285 (2006) [16] Lai, Y. J.; Hwang, C. L., A new approach to some possibilistic linear programming problems, Fuzzy Sets and Systems, 49, 121-133 (1992) [17] Lai, Y. J.; Hwang, C. L., Possibilistic linear programming for managing interest rate risk, Fuzzy Sets and Systems, 54, 135-146 (1993) [18] Lai, Y. J.; Hwang, C. L., Fuzzy Multiple Objective Decision Making (1994), Methods and Applications: Methods and Applications Springer, Berlin · Zbl 0823.90070 [19] Li, X. Q.; Zhang, B.; Li, H., Computing efficient solutions to fuzzy multiple objective linear programming problems, Fuzzy Sets and Systems, 157, 1328-1332 (2006) · Zbl 1132.90383 [20] Liang, T. F., Distribution planning decisions using interactive fuzzy multi-objective linear programming, Fuzzy Sets and Systems, 157, 1303-1316 (2006) · Zbl 1132.90384 [22] Luhandjula, M. K., Fuzzy optimization: an appraisal, Fuzzy Sets and Systems, 30, 257-282 (1989) · Zbl 0677.90088 [23] Mula, J.; Poler, R.; Garcia, J. P., MRP with flexible constraints: a fuzzy mathematical programming approach, Fuzzy Sets and Systems, 157, 74-97 (2006) · Zbl 1085.90062 [24] Mula, J.; Poler, R.; Garcia-Sabater, J. P.; Lario, F. C., Models for production planning under uncertainty: a review, Internat. J. Prod. Econom., 103, 271-285 (2006) [25] Noorul Haq, A.; Kannan, G., Design of an integrated supplier selection and multiechelon distribution inventory model in a built-to-order supply chain environment, Internat. J. Prod. Res., 44, 10, 1963-1985 (2006) [26] Park, Y. B., An integrated approach for production and distribution planning in supply chain management, Internat. J. Prod. Res., 43, 6, 1205-1224 (2005) · Zbl 1068.90557 [27] Pibernik, R.; Sucky, E., An approach to inter-domain master planning in supply chains, Internat. J. Prod. Econom., 108, 1-2, 200-212 (2007) [29] Ramik, J.; Rimanek, J., Inequality relation between fuzzy numbers and its use in fuzzy optimization, Fuzzy Sets and Systems, 16, 123-138 (1985) · Zbl 0574.04005 [31] Sakawa, M.; Yano, H., Interactive fuzzy satisficing method for multiobjective nonlinear programming problems with fuzzy parameters, Fuzzy Sets and Systems, 30, 221-238 (1989) · Zbl 0676.90078 [33] Sirias, D.; Mehra, S., Quantity discount versus lead time-dependent discount in an inter-organizational supply chain, Internat. J. Prod. Res., 43, 16, 3481-3496 (2005) [34] Sucky, E., Inventory management in supply chains: a bargaining problem, Internat. J. Prod. Econom., 93-94, 253-262 (2005) [35] Tanaka, H.; Asai, K., Fuzzy linear programming with fuzzy numbers, Fuzzy Sets and Systems, 13, 1-10 (1984) · Zbl 0546.90062 [36] Tanaka, H.; Ichihashi, H.; Asai, K., A formulation of linear programming problems based on comparison of fuzzy numbers, Control Cybernet., 13, 185-194 (1984) · Zbl 0551.90062 [37] Tempelmeier, H., A simple heuristic for dynamic order sizing and supplier selection with time-varying data, Prod. Oper. Manage., 11, 499-515 (2002) [38] Thomas, D. J.; Griffin, P. M., Coordinated supply chain management, Eur. J. Oper. Res., 94, 1-15 (1996) · Zbl 0929.90004 [39] Wang, R. C.; Liang, T. F., Applying possibilistic linear programming to aggregate production planning, Internat. J. Prod. Econom., 98, 328-341 (2005) [40] Werners, B., Aggregation models in mathematical programming, (Mitra, G.; Greenberg, H. J.; Lootsma, F. A.; Rijckaert, M. J.; Zimmermann, H-J., Mathematical Models for Decision Support (1988), Springer: Springer Berlin, Heidelberg, New York), 295-305 [41] Xia, W.; Wu, Z., Supplier selection with multiple criteria in volume discount environments, Omega: Internat. J. Manage. Sci., 35, 494-504 (2007) [42] Zimmermann, H. J., Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems, 1, 45-55 (1978) · Zbl 0364.90065 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.