×

Towards accurate numerical method for monodomain models using a realistic heart geometry. (English) Zbl 1168.92003

Summary: The simulation of cardiac electrophysiological waves is known to require extremely fine meshes, limiting the applicability of current numerical models to simplified geometries and ionic models. An accurate numerical method based on a time-dependent anisotropic remeshing strategy is presented for simulating three-dimensional cardiac electrophysiological waves. The proposed numerical method greatly reduces the number of elements and enhances the accuracy of the prediction of the electrical wave fronts. Illustrations of the performance and the accuracy of the proposed method are presented using a realistic heart geometry. Qualitative and quantitative results show that the proposed methodology is far superior to the uniform mesh methods commonly used in cardiac electrophysiology.

MSC:

92C05 Biophysics
65C20 Probabilistic models, generic numerical methods in probability and statistics
78A70 Biological applications of optics and electromagnetic theory

Software:

PETSc
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ait Ali Yahia, D.; Baruzzi, G.; Habashi, W. G.; Fortin, M.; Dompierre, J.; Vallet, M.-G., Anisotropic mesh adaptation: towards user-independent mesh-independent and solver-independent CFD. Part II: Structured grids, Int. J. Numer. Methods Fluids, 39, 657 (2002) · Zbl 1101.76350
[2] Alauzet, F.; George, P. L.; Mohammadi, B.; Frey, P. J.; Borouchaki, H., Transient fixed point based unstructured mesh adaptation, Int. J. Numer. Methods Fluids, 43, 6-7, 729 (2003) · Zbl 1032.76609
[3] Aliev, R. R.; Panfilov, A. V., A simple two-variable model of cardiac excitation, Chaos Soliton. Fract., 7, 3, 293 (1996)
[5] Belhamadia, Y., A time-dependent adaptive remeshing for electrical waves of the heart, IEEE Trans. Biomed. Eng., 55, 2 Part 1, 443 (2008)
[6] Belhamadia, Y.; Fortin, A.; Chamberland, É., Anisotropic mesh adaptation for the solution of the Stefan problem, J. Comput. Phys., 194, 1, 233 (2004) · Zbl 1040.80007
[7] Belhamadia, Y.; Fortin, A.; Chamberland, É., Three-dimensional anisotropic mesh adaptation for phase change problems, J. Comput. Phys., 201, 2, 753 (2004) · Zbl 1061.65095
[8] Bourgault, Y.; Ethier, M.; LeBlanc, V. G., Simulation of electrophysiological waves with an unstructured finite element method, Math. Model. Numer. Anal., 37, 4, 649 (2003) · Zbl 1065.92004
[9] Cherry, E. M.; Greenside, H. S.; Henriquez, C. S., Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method, Chaos Interdiscip. J. Nonlinear Sci., 13, 3, 853 (2003) · Zbl 1080.92513
[10] Colli Franzone, P.; Deufhard, P.; Erdmann, B.; Lang, J.; Pavarino, L. F., Adaptivity in space and time for reaction-diffusion systems in electrocardiology, SIAM J. Sci. Comput., 28, 3, 942 (2006) · Zbl 1114.65110
[11] Colli Franzone, P.; Pavarino, L. F., A parallel solver for reaction-diffusion systems in computational electrocardiology, Math. Models Methods Appl. Sci., 14, 6, 883 (2004) · Zbl 1068.92024
[12] Colli Franzone, P.; Pavarino, L. F.; Taccardi, B., Simulating patterns of excitation repolarization and action potential duration with cardiac bidomain and monodomain models, Math. Biosci., 197, 35 (2005) · Zbl 1074.92004
[13] Colli Franzone, P.; Pavarino, L. F.; Taccardi, B., Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: a simulation study, Math. Biosci., 204, 132 (2006) · Zbl 1104.92013
[14] Dompierre, J.; Vallet, M.-G.; Bourgault, Y.; Fortin, M.; Habashi, W. G., Anisotropic mesh adaptation: towards user-independent mesh-independent and solver-independent CFD. Part III: Unstructured meshes, Int. J. Numer. Methods Fluids, 39, 675 (2002) · Zbl 1101.76356
[15] Elharrar, V.; Surawicz, B., Cycle length effect on restitution of action potential duration in dog cardiac fibers, Am. J. Physiol. Heart Circ. Physiol., 244, 6, H782 (1983)
[16] Ethier, M.; Bourgault, Y., Semi-implicit time-discretization schemes for the bidomain model, SIAM J. Numer. Anal., 46, 5, 2443 (2008) · Zbl 1182.92009
[17] FitzHugh, R. A., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 445 (1961)
[18] Fortin, A.; Belhamadia, Y., Numerical prediction of freezing fronts in cryosurgery: comparison with experimental results, Comput. Methods Biomech. Biomed. Eng., 8, 4, 241 (2005)
[19] Fortin, A.; Benmoussa, K., An adaptive remeshing strategy for free-surface fluid flow problems. Part II: The three-dimensional case, J. Polym. Eng., 26, 1, 59 (2006)
[20] Frey, P. J.; George, P. L., Maillages Application to Finite Elements (1999), Hermes Science Publishing: Hermes Science Publishing Oxford
[22] Habashi, W. G.; Dompierre, J.; Bourgault, Y.; Ait Ali Yahia, D.; Fortin, M.; Vallet, M.-G., Anisotropic mesh adaptation: towards user-independent mesh-independent and solver-independent CFD. Part I: General principles, Int. J. Numer. Methods Fluids, 32, 725 (2000) · Zbl 0981.76052
[23] Hecht, F.; Mohammadi, B., Mesh adaptation by metric control for multi-scale phenomena and turbulence, AIAA (1997), 97-0859
[24] Hodgkin, A. L.; Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117, 500 (1952)
[25] Hooke, N.; Henriquez, C. S.; Lanzkron, P.; Rose, D., Linear algebraic transformations of the bidomain equations: implications for numerical methods, Math. Biosci., 120, 2, 127 (1994) · Zbl 0799.92001
[26] Karpoukhin, M. G.; Kogan, B. Y.; Karplus, J. W., The application of a massively parallel computer to the simulation of electrical wave propagation phenomena in the heart muscle using simplified models, HICSS, 5, 112 (1995)
[27] Keener, J. P.; Bogar, K., A numerical method for the solution of the bidomain equations in cardiac tissue, Chaos, 8, 234 (1998) · Zbl 1069.92507
[28] Lines, G. T.; Buist, M. L.; Grottum, P.; Pullan, A. J.; Sundnes, J.; Tveito, A., Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Comput. Visual. Sci., 5, 215 (2003) · Zbl 1050.92017
[29] Lines, G. T.; Grottum, P.; Tveito, A., Modeling the electrical activity of the heart: a bidomain model of the ventricles embedded in a torso, Comput. Visual. Sci., 5, 195 (2003) · Zbl 1024.92006
[31] Murillo, M.; Cai, X. C., A fully implicit parallel algorithm for simulating the non-linear electrical activity of the heart, Numer. Linear Algebra Appl., 11, 261 (2004) · Zbl 1114.65112
[32] Nagumo, J. S.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. IRE, 50, 2061 (1962)
[34] Nash, M. P.; Panfilov, A. V., Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Prog. Biophys. Mol. Biol., 85, 501 (2004)
[35] (Panfilov, A. V.; Holden, A. V., Computational Biology of the Heart (1997), John Wiley & Sons) · Zbl 0867.92011
[36] Penland, R. C.; Harrild, D. M.; Henriquez, C. S., Modeling impulse propagation and extracellular potential distribution in anisotropic cardiac tissue using a finite volume element discretization, Comput. Visual. Sci., 4, 215 (2002) · Zbl 1001.92022
[37] Pennacchio, M.; Simoncini, V., Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process, J. Comput. Appl. Math., 145, 49 (2002) · Zbl 1006.65102
[38] Roth, B. J., Approximate analytical solutions to the bidomain equations with unequal anisotropy ration, Phys. Rev. E, 55, 1819 (1997)
[39] Roth, B. J., Meandering of spiral waves in anisotropic cardiac tissue, Physica D, 150, 127 (2001) · Zbl 0974.92005
[40] Saad, Y., Iterative Methods for Sparse Linear Systems (1996), PWS Publishing Company · Zbl 1002.65042
[43] Sundnes, J.; Lines, G.; Tveito, A., An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso, Math. Biosci., 194, 2, 233 (2005) · Zbl 1063.92018
[44] Trangenstein, J. A.; Kim, C., Operator splitting and adaptive mesh refinement for the Luo-Rudy I model, J. Comput. Phys., 196, 2, 645 (2004) · Zbl 1056.92014
[45] Trew, M. L.; Smaill, B. H.; Bullivant, D. P.; Hunter, P. J.; Pullan, A. J., A generalized finite difference method for modeling cardiac electrical activation on arbitrary irregular computational meshes, Math. Biosci., 198, 2, 169 (2005) · Zbl 1093.65086
[46] Vigmond, E. J.; Aguel, F.; Trayanova, N. A., Computational techniques for solving the bidomain equations in three dimensions, IEEE Trans. Biomed. Eng., 49, 11, 1260 (2002)
[48] Weber dos Santos, R.; Plank, G.; Bauer, S.; Vigmond, E. J., Parallel multigrid preconditioner for the cardiac bidomain model, IEEE Trans. Biomed. Eng., 51, 11, 1960 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.