zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Towards accurate numerical method for monodomain models using a realistic heart geometry. (English) Zbl 1168.92003
Summary: The simulation of cardiac electrophysiological waves is known to require extremely fine meshes, limiting the applicability of current numerical models to simplified geometries and ionic models. An accurate numerical method based on a time-dependent anisotropic remeshing strategy is presented for simulating three-dimensional cardiac electrophysiological waves. The proposed numerical method greatly reduces the number of elements and enhances the accuracy of the prediction of the electrical wave fronts. Illustrations of the performance and the accuracy of the proposed method are presented using a realistic heart geometry. Qualitative and quantitative results show that the proposed methodology is far superior to the uniform mesh methods commonly used in cardiac electrophysiology.

65C20Models (numerical methods)
78A70Biological applications of optics and electromagnetic theory
Full Text: DOI
[1] Yahia, D. Ait Ali; Baruzzi, G.; Habashi, W. G.; Fortin, M.; Dompierre, J.; Vallet, M. -G.: Anisotropic mesh adaptation: towards user-independent mesh-independent and solver-independent CFD. Part II: Structured grids, Int. J. Numer. methods fluids 39, 657 (2002) · Zbl 1101.76350 · doi:10.1002/fld.356
[2] Alauzet, F.; George, P. L.; Mohammadi, B.; Frey, P. J.; Borouchaki, H.: Transient fixed point based unstructured mesh adaptation, Int. J. Numer. methods fluids 43, No. 6 -- 7, 729 (2003) · Zbl 1032.76609 · doi:10.1002/fld.548
[3] Aliev, R. R.; Panfilov, A. V.: A simple two-variable model of cardiac excitation, Chaos soliton. Fract. 7, No. 3, 293 (1996)
[4] S. Balay, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L.C. McInnes, B. Smith, H. Zhang, PETSc Users Manual, Technical Report ANL-95/11-Revision 2.1.6, Argonne National Laboratory, Argonne, IL, 2003. Available from: <http://www.mcs.anl.gov/petsc/>.
[5] Belhamadia, Y.: A time-dependent adaptive remeshing for electrical waves of the heart, IEEE trans. Biomed. eng. 55, No. 2 Part 1, 443 (2008)
[6] Belhamadia, Y.; Fortin, A.; Chamberland, É.: Anisotropic mesh adaptation for the solution of the Stefan problem, J. comput. Phys. 194, No. 1, 233 (2004) · Zbl 1040.80007 · doi:10.1016/j.jcp.2003.09.008
[7] Belhamadia, Y.; Fortin, A.; Chamberland, É.: Three-dimensional anisotropic mesh adaptation for phase change problems, J. comput. Phys. 201, No. 2, 753 (2004) · Zbl 1061.65095 · doi:10.1016/j.jcp.2004.06.022
[8] Bourgault, Y.; Ethier, M.; Leblanc, V. G.: Simulation of electrophysiological waves with an unstructured finite element method, Math. model. Numer. anal. 37, No. 4, 649 (2003) · Zbl 1065.92004 · doi:10.1051/m2an:2003051 · numdam:M2AN_2003__37_4_649_0
[9] Cherry, E. M.; Greenside, H. S.; Henriquez, C. S.: Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method, Chaos interdiscip. J. nonlinear sci. 13, No. 3, 853 (2003) · Zbl 1080.92513 · doi:10.1063/1.1594685
[10] Franzone, P. Colli; Deufhard, P.; Erdmann, B.; Lang, J.; Pavarino, L. F.: Adaptivity in space and time for reaction-diffusion systems in electrocardiology, SIAM J. Sci. comput. 28, No. 3, 942 (2006) · Zbl 1114.65110 · doi:10.1137/050634785
[11] Franzone, P. Colli; Pavarino, L. F.: A parallel solver for reaction-diffusion systems in computational electrocardiology, Math. models methods appl. Sci. 14, No. 6, 883 (2004) · Zbl 1068.92024 · doi:10.1142/S0218202504003489
[12] Franzone, P. Colli; Pavarino, L. F.; Taccardi, B.: Simulating patterns of excitation repolarization and action potential duration with cardiac bidomain and monodomain models, Math. biosci. 197, 35 (2005) · Zbl 1074.92004 · doi:10.1016/j.mbs.2005.04.003
[13] Franzone, P. Colli; Pavarino, L. F.; Taccardi, B.: Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: a simulation study, Math. biosci. 204, 132 (2006) · Zbl 1104.92013 · doi:10.1016/j.mbs.2006.06.002
[14] Dompierre, J.; Vallet, M. -G.; Bourgault, Y.; Fortin, M.; Habashi, W. G.: Anisotropic mesh adaptation: towards user-independent mesh-independent and solver-independent CFD. Part III: Unstructured meshes, Int. J. Numer. methods fluids 39, 675 (2002) · Zbl 1101.76356 · doi:10.1002/fld.357
[15] Elharrar, V.; Surawicz, B.: Cycle length effect on restitution of action potential duration in dog cardiac fibers, Am. J. Physiol. heart circ. Physiol. 244, No. 6, H782 (1983)
[16] Ethier, M.; Bourgault, Y.: Semi-implicit time-discretization schemes for the bidomain model, SIAM J. Numer. anal. 46, No. 5, 2443 (2008) · Zbl 1182.92009 · doi:10.1137/070680503
[17] Fitzhugh, R. A.: Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1, 445 (1961)
[18] Fortin, A.; Belhamadia, Y.: Numerical prediction of freezing fronts in cryosurgery: comparison with experimental results, Comput. methods biomech. Biomed. eng. 8, No. 4, 241 (2005)
[19] Fortin, A.; Benmoussa, K.: An adaptive remeshing strategy for free-surface fluid flow problems. Part II: The three-dimensional case, J. polym. Eng. 26, No. 1, 59 (2006)
[20] Frey, P. J.; George, P. L.: Maillages application to finite elements, (1999)
[21] GIREF. Available from: <http://www.giref.ulaval.ca/projets/>.
[22] Habashi, W. G.; Dompierre, J.; Bourgault, Y.; Yahia, D. Ait Ali; Fortin, M.; Vallet, M. -G.: Anisotropic mesh adaptation: towards user-independent mesh-independent and solver-independent CFD. Part I: General principles, Int. J. Numer. methods fluids 32, 725 (2000) · Zbl 0981.76052 · doi:10.1002/(SICI)1097-0363(20000330)32:6<725::AID-FLD935>3.0.CO;2-4
[23] Hecht, F.; Mohammadi, B.: Mesh adaptation by metric control for multi-scale phenomena and turbulence, Aiaa (1997)
[24] Hodgkin, A. L.; Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve, J. physiol. 117, 500 (1952)
[25] Hooke, N.; Henriquez, C. S.; Lanzkron, P.; Rose, D.: Linear algebraic transformations of the bidomain equations: implications for numerical methods, Math. biosci. 120, No. 2, 127 (1994) · Zbl 0799.92001 · doi:10.1016/0025-5564(94)90049-3
[26] Karpoukhin, M. G.; Kogan, B. Y.; Karplus, J. W.: The application of a massively parallel computer to the simulation of electrical wave propagation phenomena in the heart muscle using simplified models, Hicss 5, 112 (1995)
[27] Keener, J. P.; Bogar, K.: A numerical method for the solution of the bidomain equations in cardiac tissue, Chaos 8, 234 (1998) · Zbl 1069.92507 · doi:10.1063/1.166300
[28] Lines, G. T.; Buist, M. L.; Grottum, P.; Pullan, A. J.; Sundnes, J.; Tveito, A.: Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Comput. visual. Sci. 5, 215 (2003) · Zbl 1050.92017 · doi:10.1007/s00791-003-0101-4
[29] Lines, G. T.; Grottum, P.; Tveito, A.: Modeling the electrical activity of the heart: a bidomain model of the ventricles embedded in a torso, Comput. visual. Sci. 5, 195 (2003) · Zbl 1024.92006 · doi:10.1007/s00791-003-0100-5
[30] C. Manole, M.-G. Vallet, J. Dompierre, F. Guibault, Benchmarking second order derivatives recovery of a piecewise linear scalar field, in: Proceedings of the 17th IMACS World Congress Scientific Computation, Applied Mathematics and Simulation, 2005.
[31] Murillo, M.; Cai, X. C.: A fully implicit parallel algorithm for simulating the non-linear electrical activity of the heart, Numer. linear algebra appl. 11, 261 (2004) · Zbl 1114.65112 · doi:10.1002/nla.381
[32] Nagumo, J. S.; Arimoto, S.; Yoshizawa, S.: An active pulse transmission line simulating nerve axon, Proc. IRE 50, 2061 (1962)
[33] M. Nash, Mechanics and Material Properties of the Heart using an Anatomically Accurate Mathematical Model, PhD thesis, University of Auckland, New Zealand, 1998.
[34] Nash, M. P.; Panfilov, A. V.: Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Prog. biophys. Mol. biol. 85, 501 (2004)
[35] , Computational biology of the heart (1997) · Zbl 0867.92011
[36] Penland, R. C.; Harrild, D. M.; Henriquez, C. S.: Modeling impulse propagation and extracellular potential distribution in anisotropic cardiac tissue using a finite volume element discretization, Comput. visual. Sci. 4, 215 (2002) · Zbl 1001.92022 · doi:10.1007/s00791-002-0078-4
[37] Pennacchio, M.; Simoncini, V.: Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process, J. comput. Appl. math. 145, 49 (2002) · Zbl 1006.65102 · doi:10.1016/S0377-0427(01)00535-0
[38] Roth, B. J.: Approximate analytical solutions to the bidomain equations with unequal anisotropy ration, Phys. rev. E 55, 1819 (1997)
[39] Roth, B. J.: Meandering of spiral waves in anisotropic cardiac tissue, Physica D 150, 127 (2001) · Zbl 0974.92005 · doi:10.1016/S0167-2789(01)00145-2
[40] Saad, Y.: Iterative methods for sparse linear systems, (1996) · Zbl 1031.65047
[41] M. Sermesant, Y. Coudière, H. Delingette, N. Ayache, J.A. Désidéri, An electro-mechanical model of the heart for cardiac image analysis, in: W.J. Niessen, M.A. Viergever (Eds.), Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2001, Fourth International Conference, No. 2208 in Lecture Notes in Computer Science, Springer, 2001, pp. 224 -- 231. · Zbl 1041.68733 · http://link.springer.de/link/service/series/0558/bibs/2208/22080224.htm
[42] J. Sundnes, Numerical Methods for Simulating the Electrical Activity of the Heart, PhD thesis, University of Oslo, 2002.
[43] Sundnes, J.; Lines, G.; Tveito, A.: An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso, Math. biosci. 194, No. 2, 233 (2005) · Zbl 1063.92018 · doi:10.1016/j.mbs.2005.01.001
[44] Trangenstein, J. A.; Kim, C.: Operator splitting and adaptive mesh refinement for the luo-rudy I model, J. comput. Phys. 196, No. 2, 645 (2004) · Zbl 1056.92014 · doi:10.1016/j.jcp.2003.11.014
[45] Trew, M. L.; Smaill, B. H.; Bullivant, D. P.; Hunter, P. J.; Pullan, A. J.: A generalized finite difference method for modeling cardiac electrical activation on arbitrary irregular computational meshes, Math. biosci. 198, No. 2, 169 (2005) · Zbl 1093.65086 · doi:10.1016/j.mbs.2005.07.007
[46] Vigmond, E. J.; Aguel, F.; Trayanova, N. A.: Computational techniques for solving the bidomain equations in three dimensions, IEEE trans. Biomed. eng. 49, No. 11, 1260 (2002)
[47] R. Weber Dos Santos, G. Plank, S. Bauer, E.J. Vigmond, Preconditioning techniques for the bidomain equations, in: Proceedings of the 15th International Conference on Domain Decomposition Methods, Lecture Notes in Computational Science and Engineering (LNCSE), Springer, 2003, pp. 571 -- 580. · Zbl 1059.92019
[48] Dos Santos, R. Weber; Plank, G.; Bauer, S.; Vigmond, E. J.: Parallel multigrid preconditioner for the cardiac bidomain model, IEEE trans. Biomed. eng. 51, No. 11, 1960 (2004) · Zbl 1059.92019
[49] W. Ying, A Multilevel Adaptive Approach for Computational Cardiology, PhD thesis, Duke University, Durham, USA, 2005.