zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A model of macroscale deformation and microvibration in skeletal muscle tissue. (English) Zbl 1168.92008
Summary: This paper deals with modeling the passive behavior of skeletal muscle tissues including certain microvibrations at the cell level. Our approach combines a continuum mechanics model with large deformations and incompressibility at the macroscale with chains of coupled nonlinear oscillators. The model verifies that an externally applied vibration at the appropriate frequency is able to synchronize microvibrations in skeletal muscle cells. From the numerical analysis point of view, one faces a partial differential-algebraic equation (PDAE) that after semi-discretization in space by finite elements possesses an index up to three, depending on certain physical parameters. In this context, the consequences for the time integration as well as possible remedies are discussed.

74A99Generalities, axiomatics, foundations of continuum mechanics of solids
74C05Small-strain, rate-independent theories
65L05Initial value problems for ODE (numerical methods)
65M12Stability and convergence of numerical methods (IVP of PDE)
65M20Method of lines (IVP of PDE)
Full Text: DOI EuDML
[1] U. Ascher and L. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia, USA (1998). Zbl0908.65055 · Zbl 0908.65055
[2] K.E. Brenan, S.L. Campbell and L.R. Petzold, The Numerical Solution of Initial Value Problems in Ordinary Differential-Algebraic Equations. SIAM, Philadelphia, USA (1996). Zbl0844.34008 · Zbl 0844.34008
[3] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer (1991). Zbl0788.73002 · Zbl 0788.73002
[4] P. Brown, A. Hindmarsh and L.R. Petzold, Using Krylow methods in the solution of large-scale differential-algebraic systems. SIAM J. Sci. Comp.15 (1994) 1467-1488. Zbl0812.65060 · Zbl 0812.65060 · doi:10.1137/0915088
[5] COMSOL Multiphysics User Manual, Version 3.4 (2007).
[6] M. Cross, J. Rogers, R. Lifshitz and A. Zumdieck, Synchronization by reactive coupling and nonlinear frequency pulling. Phys. Rev. E\thinspace 73 (2006) 036205.
[7] F. Dietrich, Ein Zweiskalenansatz zur Modellierung der Skelettmuskulatur. Diploma Thesis, TU München, Germany (2007).
[8] E. Gallasch and T. Kenner, Characterisation of arm microvibration recorded on an accelometer. Eur. J. Appl. Physiol. 75 (1997) 226-232.
[9] E. Gallasch and M. Moser, Effects of an eight-day space flight on microvibration and physiological tremor. Am. J. Physiol.273 (1997) R86-R92.
[10] C. Gear, G. Gupta and B. Leimkuhler, Automatic integration of the Euler-Lagrange equations with constraints. J. Comp. Appl. Math.12 (1985) 77-90. Zbl0576.65072 · Zbl 0576.65072 · doi:10.1016/0377-0427(85)90008-1
[11] A. Gielen, C. Oomens, P. Bovendeerd and T. Arts, A finite element approach for skeletal muscle using a distributed moment model of contraction. Comp. Meth. Biomech. Biomed. Engng.3 (2000) 231-244.
[12] A. Goldbeter, Biochemical Oscillations and Cellular Rhythms. Cambridge University Press (1996). · Zbl 0837.92009
[13] G. Golub and C. van Loan, Matrix Computations. Third Edition, John Hopkins University Press, Baltimore (1996). · Zbl 0865.65009
[14] A.V. Hill, The heat of shortening and the dynamic constants of muscle. P. Roy. Soc. Lond. B Bio.126 (1938) 136-195.
[15] T.J. Hughes, The Finite Element Method. Prentice Hall, Englewood Cliffs (1987). · Zbl 0634.73056
[16] A.F. Huxley, Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem.7 (1957) 255-318.
[17] E. Kuhl, K. Garikipati, E.M. Arruda and K. Grosh, Remodeling of biological tissue: Mechanically induced reorientation of a transversely isotropic chain network. J. Mech. Physics Solids53 (2005) 1552-1573. · Zbl 1120.74635 · doi:10.1016/j.jmps.2005.03.002
[18] G.T. Line, J. Sundnes and A. Tveito, An operator splitting method for solving the Bidomain equations coupled to a volume conductor model for the torso. Math. Biosci.194 (2005) 233-248. · Zbl 1063.92018 · doi:10.1016/j.mbs.2005.01.001
[19] Ch. Lubich, Integration of stiff mechanical systems by Runge-Kutta methods. ZAMP44 (1993) 1022-1053. · Zbl 0784.70002 · doi:10.1007/BF00942763
[20] J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity. Dover Publications (1994). · Zbl 0545.73031
[21] W. Maurel, N.Y. Wu and D. Thalmann, Biomechanical models for soft tissue simulation. Springer (1998).
[22] P. Matthews, R. Mirollo and St. Strogatz, Dynamics of a large system of coupled nonlinear oscillators. Physica D52 (1991) 293-331. · Zbl 0742.34035 · doi:10.1016/0167-2789(91)90129-W
[23] U. Randoll, Matrix-Rhythm-Therapy of Dynamic Illnesses, in Extracellular Matrix and Groundregulation System in Health and Disease, H. Heine, M. Rimpler, G. Fischer Eds., Stuttgart-Jena-New York (1997) 57-70.
[24] B. Simeon, On Lagrange multipliers in flexible multibody dynamics. Comput. Methods Appl. Mech. Eng.195 (2006) 6993-7005. · Zbl 1120.74517 · doi:10.1016/j.cma.2005.04.015
[25] www-m2.ma.tum.de/twiki/bin/view/Allgemeines/ProfessorSimeon/movie12.avi.
[26] S. Thiemann, Modellierung und numerische Simulation der Skelettmuskulatur. Diploma Thesis, TU München, Germany (2006).
[27] G.I. Zahalak and I. Motabarzadeh, A re-examination of calcium activation in the Huxley cross-bridge model. J. Biomech. Engng.119 (1997) 20-29.