zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust filtering for stochastic genetic regulatory networks with time-varying delay. (English) Zbl 1168.92020
Summary: This paper addresses the robust filtering problem for a class of linear genetic regulatory networks (GRNs) with stochastic disturbances, parameter uncertainties and time delays. The parameter uncertainties are assumed to reside in a polytopic region, the stochastic disturbance is state-dependent described by a scalar Brownian motion, and the time-varying delays enter into both the translation process and the feedback regulation process. We aim to estimate the true concentrations of mRNA and proteins by designing a linear filter such that, for all admissible time delays, stochastic disturbances as well as polytopic uncertainties, the augmented state estimation dynamics is exponentially mean square stable with an expected decay rate. A delay-dependent linear matrix inequality (LMI) approach is first developed to derive sufficient conditions that guarantee the exponential stability of the augmented dynamics, and then the filter gains are parameterized in terms of the solution to a set of LMIs. Note that LMIs can be easily solved by using standard software packages. A simulation example is exploited in order to illustrate the effectiveness of the proposed design procedures.

MSC:
92C40Biochemistry, molecular biology
60J65Brownian motion
92D10Genetics
WorldCat.org
Full Text: DOI
References:
[1] Becskei, A.; Serrano, L.: Engineering stability in gene networks by autoregulation, Nature 405, 590 (2000)
[2] Boyd, S.; Ghaoui, L. Ei; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory, (1994) · Zbl 0816.93004
[3] Chen, B. S.; Wang, Y.: On the attenuation and amplification of molecular noise in genetic regulatory networks, BMC bioinform. 7, No. 52 (2006)
[4] Chen, B. S.; Wu, W. S.: Robust filtering circuit design for stochastic gene networks under intrinsic and extrinsic molecular noises, Math. biosci. 211, No. 2, 342 (2008) · Zbl 1130.92023 · doi:10.1016/j.mbs.2007.11.002
[5] Chen, B. S.; Chang, Y. T.; Wang, Y. C.: Robust H$\infty $ stabilization design in gene networks under stochastic molecular noises: fuzzy-interpolation approach, IEEE trans. Syst. man cybernet. B: cybernet 38, No. 1, 25 (2008)
[6] T. Chen, H. He, G. Church, Modeling gene expression with differential equations, in: Proc. Pacific Symposium on Biocomputing, vol. 4, 1999, pp. 29 -- 40.
[7] Chen, L.; Aihara, K.: Stability of genetic regulatory networks with time delay, IEEE trans. Circuits syst I 49, 602 (2002)
[8] Cook, D.; Gerber, A.; Tapscott, S.: Modeling stochastic gene expression: implications for haploinsufficiency, Proc. natl. Acad. sci. USA 95, 15641 (1998)
[9] P. D’haeseleer, X. Wen, S. Fuhrman, R. Somogyi, Linear modeling of mRNA expression levels during CNS development and injury, in: Proc. Pacific Symposium on Biocomputing, vol. 4, 1999, pp. 41 -- 52.
[10] Gao, H.; Lam, J.; Wang, C.: Robust energy-to-peak filter design for stochastic time-delay systems, Syst. control lett. 55, No. 2, 101 (2006) · Zbl 1129.93538 · doi:10.1016/j.sysconle.2005.05.005
[11] Gao, H.; Lam, J.; Wang, C.: Induced l2 and generalized H2 filtering for systems with repeated scalar nonlinearities, IEEE trans. Signal process. 53, No. 11, 4215 (2005)
[12] Gao, H.; Wang, C.: Delay-dependent robust H$\infty $ and L2 -- L$\infty $ filtering for a class of uncertain nonlinear time-delay systems, IEEE trans. Automat. control 48, No. 9, 1631 (2003)
[13] Gardner, T.; Cantor, C.; Collins, J.: Construction of a genetic toggle switch in escherichia coli, Nature 403, 339 (2000)
[14] He, Y.; Wang, Q.; Xie, L.; Lin, C.: Further improvement of free-weighting matrices technique for systems with time-varying delay, IEEE trans. Automat. control 52, No. 2, 293 (2007)
[15] Huang, S.: Gene expression profilling genetic networks and cellular states: an integrating concept for tumorigenesis and drug discovery, J. mol. Med. 77, 469 (1999)
[16] M. de Hoon, S. Imoto, K. Kobayashi, N. Ogasawara, S. Miyano, Infering gene regulatory networks from time-ordered gene expression data of bacillus subtilis using differential equations, in: Proc. Pacific Symposium on Biocomputing, vol. 8, pp. 17 -- 28, 2003. · Zbl 1219.92032
[17] Hale, J. K.: The theory of functional differential equations, (1977) · Zbl 0352.34001
[18] Hasty, J.; Pradines, J.; Dolink, M.; Collins, J.: Biophysics noise-based switches and amplifiers for gene expression, Proc. natl acad. Sci. USA 97, No. 5, 2075 (2000)
[19] Li, C.; Chen, L.; Aihara, K.: Synchronization of coupled nonidentical genetic oscillators, Phys. biol. 3, 37 (2006)
[20] Li, C.; Chen, L.; Aihara, K.: Stability of genetic networks with sum regulatory logic: Lur’e system and LMI approach, IEEE trans. Circuits syst. I 53, No. 11, 2451 (2006)
[21] Kushur, H.: Stochastic stability and control, (1976)
[22] Kauffman, S. A.: Metabolic stability and epigenesis in randomly constructed genetic nets, J. theor. Biol. 22, No. 3, 437 (1969)
[23] Kauffman, S. A.: The origins of order, (1993)
[24] Mao, X.: Stochastic differential equations and their applications, Horwood publishing series in mathematics and applications (1997)
[25] Monk, N. A. M.: Oscillatory expression of hes1 p53 and NF-$\kappa B$ driven by transcriptional time delays, Curr. biol. 13, 1409 (2003)
[26] Paulsson, J.: Summing up the noise in gene networks, Nature 427, 415 (2004)
[27] Pease, A.; Solas, D.; Sullivan, E.; Cronin, M.; Holmes, C.; Fodor, S.: Light-generated oligonucleotide arrays for rapid DNA sequence analysis, Proc. natl. Acad. sci. USA 91, 5022 (1994)
[28] Ren, F.; Cao, J.: Asymptotic and robust stability of genetic regulatory networks with time-varying delays, Neurocomputing 71, 834 (2008)
[29] Z. Shu, J. Lam, Delay-dependent exponential estimates of stochastic neural networks with time delay, in: Proc. International Conference on Neural Information Processing, Part I, in: Lecture Notes in Computer Science, vol. 4232, 2006, pp. 332 -- 341.
[30] Smolen, P.; Baxter, D.; Byrne, J.: Mathematical modeling of gene networks, Neuron 26, 567 (2000) · Zbl 1323.92088
[31] Smolen, P.; Baxter, D.; Byrne, J.: Modelling circadian oscillations with interlocking positive and negative feedback loops, J. neurosci. 21, 6644 (2001)
[32] Thomas, R.: Boolean formalization of genetic control circuits, J. theor. Biol. 42, No. 3, 563 (1973)
[33] T. Tian and K. Burrage, stochastic neural network models for gene regulatory networks, in: Proc. IEEE Congress on Evolutionary Computation, 2003, pp. 162 -- 169.
[34] Wang, Z.; Yang, F.; Ho, D. W. C.; Liu, X.: Robust H$\infty $ filtering for stochastic time-delay systems with missing measurements, IEEE trans. Signal process. 54, No. 7, 2579 (2006)
[35] Wang, Z.; Burnham, K.: Robust filtering for a class of stochastic uncertain nonlinear time-delay systems via exponential state estimation, IEEE trans. Signal process. 49, No. 4, 794 (2001)
[36] Wu, M.; He, Y.; She, J.; Liu, G.: Delay-dependent criteria for robust stability of time-varying delay systems, Automatica 40, No. 8, 1435 (2004) · Zbl 1059.93108 · doi:10.1016/j.automatica.2004.03.004
[37] Wei, G.; Wang, Z.; Shu, H.; Fraser, K.; Liu, X.: Robust filtering for gene expression time series data with variance constraints, Int. J. Comput. math. 84, No. 5, 619 (2007) · Zbl 1116.62100 · doi:10.1080/00207160601134433