Automorphy for some \(l\)-adic lifts of automorphic mod \(l\) Galois representations. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras. (English) Zbl 1169.11020

The goal of the article under review is to extend the methods of A. Wiles [Ann. Math. (2) 141, No. 3, 443–551 (1995; Zbl 0823.11029)] and R. Taylor, A. Wiles [Ann. Math. (2) 141, No. 3, 553–572 (1995; Zbl 0823.11030)] from \(\mathrm{GL}_2\) to unitary groups of any rank.
The authors work with the disconnected group \(\mathcal{G}_n\), which is the semidirect product of \(\mathrm{GL}_n\times \mathrm{GL}_1\) by the two element group. In this setting the Taylor-Wiles argument carries over well, and the authors prove \(R=T\) type of theorems in the “minimal case” (i.e., they consider deformation problems where the lifts on the inertia groups away from \(\ell\) are completely prescribed, e.g., as unramified as possible away from \(\ell\)). As the authors indicate in their very well-written introduction, there are three key inputs to their proof:
(1) F. Diamond [Invent. Math. 128, No. 2, 379–391 (1997; Zbl 0916.11037)] and K. Fujiwara’s observation that Mazur’s multiplicity one principle is not needed for the Taylor-Wiles argument.
(2) A trick due to C. Skinner and A. Wiles [Duke Math. J. 107, No. 1, 15–25 (2001; Zbl 1016.11017)] which involves a base-change argument to bypass Ribet’s level lowering results.
(3) The proof of the local Langlands conjecture for \(\mathrm{GL}_n\) by the second and third named author, and its compatibility with the global Langlands correspondence.
The authors prove the automorphy of certain Galois representations \(r: \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \mathrm{GSp}_n(\mathbb{Z}_\ell)\) under a list of technical conditions. We do not state these hypotheses in detail, instead we give an overview of their content below. We refer the reader to Theorems 4.4.2 – 4.4.3 and Corollary 4.4.4 of the paper under review.
(\(H_I\)) The image of the representation \(\overline{r}:= r \bmod {\ell}\) restricted to \(\text{Gal}(\overline{F}/F(\zeta_\ell))\) should be big in the sense of Definition 2.5.1 of the article, so that the Chebotarev argument in the Taylor-Wiles method works. This condition holds, for example, when the image of \(\overline{r}\) contains \(\mathrm{Sp}_n(\mathbb{F}_\ell)\) (see Lemma 2.5.5).
(\(H_{C+HT}\)) We have \(\ell>n\) and \(r \big{|}_{\text{Gal}(\overline{\mathbb{Q}}_\ell/\mathbb{Q}_\ell)}\) is crystalline with Hodge-Tate weights lying within the interval \([0,n-1]\). This is to ensure that Fontaine-Laffaille theory applies to calculate the local deformation ring at \(\ell\). Furthermore, the Hodge-Tate weights are assumed to be distinct. This, together with the assumption that \(r\) is valued in the symplectic group ensures that \(r\) satisfies the sort of self-duality which is needed for the numerical criterion in Taylor-Wiles method to hold.
(\(H_S\)) For a non-empty auxiliary set of primes \(S\) and for \(\ell \neq q \in S\), the restriction \(r\big{|}_{G_{\mathbb{Q}_q}}\) “looks as if it could correspond to a Steinberg representation under the local Langlands correspondence”. The authors explain that the set \(S\) is required to be non-empty so that relevant automorphic forms may be transferred to and from unitary groups, so that one can attach Galois representations to these automorphic forms.
(\(H_M\)) Outside the auxiliary set \(S\) and away from \(\ell\). the image of \(r\) on the inertia should be finite. This hypothesis has to do with the fact that the authors are working in the minimal case.
In order to be able to remove the minimality condition (\(H_M\)), the authors formulate a conjecture (Conjecture I and the stronger Conjecture II, both in Section 5.3), which is an analogue of Ihara’s Lemma for elliptic modular forms ([Y. Ihara, Discrete Subgroups of Lie Groups Appl. Moduli, Pap. Bombay Colloq. 1973, 161–202 (1975; Zbl 0343.14007)], K. Ribet [Proc. Int. Congr. Math., Warszawa 1983, Vol. 1, 503–514 (1984; Zbl 0575.10024)]). If Conjecture I holds, the authors obtain certain level raising results which, much like in [ A. Wiles, loc. cit.], can be used to treat the non-minimal case.
The third named author has developed a new technique in a sequel to this paper [R. Taylor, Publ. Math., Inst. Hautes Étud. Sci. 108, 183–239 (2008; Zbl 1169.11021)], which may be used to treat the non-minimal case without the relying on Conjecture I. The authors indicate that the results of the paper under review are still stronger than that of R. Taylor (loc. cit.) (assuming Conjecture I), as in loc.cit., a Hecke algebra is identified with a universal deformation ring modulo its nilradical.
Overall, this is a very important paper which is written very nicely; it contains very many details on the most recent technology involved in the proofs of modularity lifting theorems.


11F80 Galois representations
11G18 Arithmetic aspects of modular and Shimura varieties
11R34 Galois cohomology

Biographic References:

Mann, Russ
Full Text: DOI


[1] J. Arthur and L. Clozel, Simple Algebras, Base Change and the Advanced Theory of the Trace Formula, Ann. Math. Stud., vol. 120, Princeton University Press, Princeton, NJ, 1989. · Zbl 0682.10022
[2] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive \(\mathfrak{p}\) -adic groups. I, Ann. Sci. Éc. Norm. Supér., IV. Sér., 10 (1977), 441–472. · Zbl 0412.22015
[3] H. Carayol, Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, in p-adic Monodromy and the Birch and Swinnerton–Dyer Conjecture, Contemp. Math., vol. 165, pp. 213–237, Amer. Math. Soc., Providence, RI, 1994.
[4] L. Clozel, On the cohomology of Kottwitz’s arithmetic varieties, Duke Math. J., 72 (1993), 757–795. · Zbl 0974.11019
[5] L. Clozel and J.-P. Labesse, Changement de base pour les représentations cohomologiques des certaines groupes unitaires, appendix to ”Cohomologie, stabilisation et changement de base”, Astérisque, 257 (1999), 120–132.
[6] E. Cline, B. Parshall, and L. Scott, Cohomology of finite groups of Lie type I, Publ. Math., Inst. Hautes Étud. Sci., 45 (1975), 169–191. · Zbl 0412.20044
[7] C. Curtis and I. Reiner, Methods of Representation Theory I, Wiley Interscience, New York, 1981. · Zbl 0469.20001
[8] H. Darmon, F. Diamond, and R. Taylor, Fermat’s last theorem, in Current Developments in Mathematics, International Press, Cambridge, MA, 1994. · Zbl 0877.11035
[9] F. Diamond, The Taylor–Wiles construction and multiplicity one, Invent. Math., 128 (1997), 379–391. · Zbl 0916.11037
[10] M. Dickinson, A criterion for existence of a universal deformation ring, appendix to ”Deformations of Galois representations” by F. Gouvea, in Arithmetic Algebraic Geometry (Park City, UT, 1999), Amer. Math. Soc., Providence, RI, 2001.
[11] F. Diamond and R. Taylor, Nonoptimal levels of mod l modular representations, Invent. Math., 115 (1994), 435–462. · Zbl 0847.11025
[12] J.-M. Fontaine and G. Laffaille, Construction de représentations p-adiques, Ann. Sci. Éc. Norm. Supér., IV. Sér., 15 (1982), 547–608. · Zbl 0579.14037
[13] M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. Math. Stud., vol. 151, Princeton University Press, Princeton, NJ, 2001. · Zbl 1036.11027
[14] M. Harris, N. Shepherd-Barron, and R. Taylor, A family of hypersurfaces and potential automorphy, to appear in Ann. Math. · Zbl 1263.11061
[15] Y. Ihara, On modular curves over finite fields, in Discrete Subgroups of Lie Groups and Applications to Moduli, Oxford University Press, Bombay, 1975. · Zbl 0343.14007
[16] H. Jacquet and J. Shalika, On Euler products and the classification of automorphic forms I, Amer. J. Math., 103 (1981), 499–558. · Zbl 0473.12008
[17] H. Jacquet and J. Shalika, On Euler products and the classification of automorphic forms II, Amer. J. Math., 103 (1981), 777–815. · Zbl 0491.10020
[18] H. Jacquet, I. Piatetski-Shapiro, and J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann., 256 (1981), 199–214. · Zbl 0451.22011
[19] X. Lazarus, Module universel en caractéristique l>0 associé à un caractère de l’algèbre de Hecke de GL(n) sur un corps p-adique, avec \(l\neq p\) , J. Algebra, 213 (1999), 662–686. · Zbl 0920.22010
[20] H. Lenstra, Complete intersections and Gorenstein rings, in Elliptic Curves, Modular Forms and Fermat’s Last Theorem, International Press, Cambridge, MA, 1995.
[21] W. R. Mann, Local level-raising for GL n , PhD thesis, Harvard University (2001).
[22] W. R. Mann, Local level-raising on GL(n), partial preprint.
[23] D. Mauger, Algèbres de Hecke quasi-ordinaires universelles, Ann. Sci. Éc. Norm. Supér., IV. Sér., 37 (2004), 171–222. · Zbl 1196.11074
[24] B. Mazur, An introduction to the deformation theory of Galois representations, in Modular Forms and Fermat’s Last Theorem (Boston, MA, 1995), Springer, New York, 1997.
[25] C. Moeglin and J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér., IV. Sér., 22 (1989), 605–674. · Zbl 0696.10023
[26] M. Nori, On subgroups of \(\text{GL}_n(\mathbb{F}_p)\) , Invent. Math., 88 (1987), 257–275. · Zbl 0632.20030
[27] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of Number Fields, Grundl. Math. Wiss., vol. 323, Springer, Berlin, 2000. · Zbl 0948.11001
[28] R. Ramakrishna, On a variation of Mazur’s deformation functor, Compos. Math., 87 (1993), 269–286. · Zbl 0910.11023
[29] R. Ramakrishna, Deforming Galois representations and the conjectures of Serre and Fontaine–Mazur, Ann. Math., 156 (2002), 115–154. · Zbl 1076.11035
[30] K. Ribet, Congruence relations between modular forms, in Proceedings of the Warsaw ICM, PWN, Warsaw, 1984. · Zbl 0575.10024
[31] A. Roche, Types and Hecke algebras for principal series representations of split reductive p-adic groups, Ann. Sci. Éc. Norm. Supér., IV. Sér., 31 (1998), 361–413. · Zbl 0903.22009
[32] J.-P. Serre, Abelian l-adic Representations and Elliptic Curves, Benjamin, New York, Amsterdam, 1968.
[33] J.-P. Serre, Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math., 116 (1994), 513–530. · Zbl 0816.20014
[34] T. Shintani, On an explicit formula for class-1 ”Whittaker functions” on GL n over P-adic fields, Proc. Japan Acad., 52 (1976), 180–182. · Zbl 0387.43002
[35] C. Skinner and A. Wiles, Base change and a problem of Serre, Duke Math. J., 107 (2001), 15–25. · Zbl 1016.11017
[36] J. Tate, Number theoretic background, in A. Borel and W. Casselman Automorphic Forms, Representations and L-Functions, Proc. Symp. Pure Math., vol. 33(2), Amer. Math. Soc., Providence, RI, 1979.
[37] R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations. II, this volume. · Zbl 1169.11021
[38] J. Tilouine, Deformations of Galois Representations and Hecke Algebras, Mehta Institute, New Dehli, 2002. · Zbl 1005.11031
[39] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. Math., 141 (1995), 553–572. · Zbl 0823.11030
[40] M.-F. Vignéras, Représentations l-modulaires d’un groupe réductif p-adique avec \(l\neq p\) , Progr. Math., vol. 137, Birkhäuser, Boston, MA, 1996.
[41] M.-F. Vignéras, Induced R-representations of p-adic reductive groups, Sel. Math., New Ser., 4 (1998), 549–623. · Zbl 0943.22017
[42] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. Math., 141 (1995), 443–551. · Zbl 0823.11029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.