Skinner, Christopher; Urban, Eric On the \(p\)-adic deformations of certain automorphic representations. (Sur les déformations \(p\)-adiques de certaines représentations automorphes.) (French) Zbl 1169.11314 J. Inst. Math. Jussieu 5, No. 4, 629-698 (2006). Summary: By an entirely new method that makes use of \(p\)-adic deformations of automorphic representations of \(\mathrm{GSp}_{4}/\mathbb{Q}\), we prove that the \(p\)-adic Selmer group \(H^1_f(\mathbb{Q},V_f(k))\) associated to a modular form \(f\) of weight \(2k\) that is ordinary at \(p\) is infinite if the order of vanishing at \(k\) of the \(L\)-function of \(f\) is odd.See also the authors’ announcement in C. R., Math., Acad. Sci. Paris 335, No. 7, 581–586 (2002; Zbl 1024.11030). Cited in 1 ReviewCited in 30 Documents MSC: 11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture 11F80 Galois representations 11F33 Congruences for modular and \(p\)-adic modular forms 11F85 \(p\)-adic theory, local fields 11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms Keywords:\(p\)-adic modular forms; Galois representations; Selmer groups; \(L\)-functions Citations:Zbl 1024.11030 PDF BibTeX XML Cite \textit{C. Skinner} and \textit{E. Urban}, J. Inst. Math. Jussieu 5, No. 4, 629--698 (2006; Zbl 1169.11314) Full Text: DOI