zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A PDE variational approach to image denoising and restoration. (English) Zbl 1169.35341
Summary: We discuss a general variational model for image restoration based on the minimization of a convex functional of gradient under minimal growth conditions. This approach is related to minimization in bounded variation norm and has a smoothing effect on degraded image while preserving the edge features.

35K55Nonlinear parabolic equations
94A08Image processing (compression, reconstruction, etc.)
35A15Variational methods (PDE)
Full Text: DOI
[1] Adams, R. A.: Sobolev spaces. (1975) · Zbl 0314.46030
[2] Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces. (1976) · Zbl 0328.47035
[3] Barbu, V.: Analysis and control of infinite dimensional nonlinear equations. (1993) · Zbl 0776.49005
[4] CattĂ©, F.; Lions, P. L.; Morel, J. M.; Call, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. anal. 29, 182 (1992) · Zbl 0746.65091
[5] Chen, Y.; Wunderli, W.: Adaptive total variation for image restoration in BV spaces. J. math. Anal. appl. 272, 117-137 (2002) · Zbl 1020.68104
[6] Kaepfler, G.; Lopez, C.; Morel, J. M.: A multiscale algorithm for image segmentation by variational methods. SIAM J. Numer. anal. 31, 282-299 (1994) · Zbl 0804.68053
[7] Cottet, G. H.; Germain, L.: Image processing through reaction combine with nonlinear diffusion. Math. comput. 61, 659-673 (1993) · Zbl 0799.35117
[8] Diewald, U.; Preusser, T.; Rumpf, M.; Strzodka, R.: Diffusion models and their accelerated solutions in image and surface processing. Acta math. Univ. comenianae 70, 15-21 (2001) · Zbl 0993.65109
[9] Perova, P.; Malik, J.: Scale space and edge detection using anizotropic diffusion. IEEE trans. Pattern anal. Mach intell. 12, 629-639 (1990)
[10] Weickert, J.; Romany, B. M. Haar; Viergever, M. A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE trans. Image process. 7, 398-410 (1998)
[11] Rudin, L. I.; Osher, S.; Fatemi, F.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259 (1992) · Zbl 0780.49028
[12] Lim, Jae S.: Two-dimensional signal and image processing. (1990)
[13] Lapidus, L.; Pinder, G. F.: Numerical solution of partial differential equations in science and engineering. SIAM rev. 25, No. 4, 581-582 (1983)