## Biseparating maps between Lipschitz function spaces.(English)Zbl 1169.47024

Let $$X,Y$$ be bounded complete metric spaces and let $$E,F$$ be (real or complex) normed spaces. We write $$\text{Lip}(X,E)= \{$$all bounded $$E$$-valued Lipschitz functions}; $$\text{Lip}(X)= \{$$all bounded Lipschitz functionals}; $$L'(E,F)=\{$$all linear bijections from $$E$$ to $$F\}$$. A map $$T:\text{Lip}(X,E)\to \text{Lip}(Y,F)$$ is said to be separating if $$T$$ is linear and $$\|Tf(y)\|\,\|Tg (y)\|=0$$ for all $$y\in Y$$, whenever $$f,g\in \text{Lip}(X,E)$$ satisfy $$\|fx<\|\|g(x) \|=0$$ for all $$x\in X$$. $$T$$ is said to be biseparating if $$T$$ is bijective and both $$T$$ and $$T^{-1}$$ are separating. The authors establish the following results.
Proposition 1. Let $$T:\text{Lip}(X,E)\to \text{Lip}(Y,F)$$ be a biseparating map. Then there exists a bi-Lipschitz homeomorphism $$h:Y \to X$$ and a map $$J:Y\to L'(E,F)$$ such that $$Tf(y)=(Jy) (f(h(y)))$$ for all $$f\in \text{Lip}(X,E)$$ and $$y\in Y$$.
Proposition 2. Let $$T:\text{Lip}(X)\to \text{Lip}(Y)$$ be a bijective separating map. If $$Y$$ is compact, then $$T$$ is biseparating and continuous.

### MSC:

 47B38 Linear operators on function spaces (general) 46E10 Topological linear spaces of continuous, differentiable or analytic functions 54C35 Function spaces in general topology
Full Text:

### References:

 [1] Abramovich, Y.A.; Kitover, A.A., Inverses of disjointness preserving operators, Mem. amer. math. soc., 143, (2000) · Zbl 0973.47030 [2] Araujo, J., Linear biseparating maps between spaces of vector-valued differentiable functions and automatic continuity, Adv. math., 187, 488-520, (2004) · Zbl 1073.47031 [3] Araujo, J., Realcompactness and banach – stone theorems, Bull. belg. math. soc. Simon stevin, 11, 247-258, (2004) · Zbl 1077.46029 [4] Araujo, J., Realcompactness and spaces of vector-valued functions, Fund. math., 172, 27-40, (2002) · Zbl 0997.46028 [5] Araujo, J., Separating maps and linear isometries between some spaces of continuous functions, J. math. anal. appl., 226, 23-39, (1998) · Zbl 0918.46026 [6] Araujo, J.; Font, J.J., Linear isometries on subalgebras of uniformly continuous functions, Proc. edinb. math. soc. (2), 43, 139-147, (2000) · Zbl 0945.46032 [7] Araujo, J.; Jarosz, K., Automatic continuity of biseparating maps, Studia math., 155, 231-239, (2003) · Zbl 1056.46032 [8] Bustamante, J.; Arrazola, J.R., Homomorphisms on Lipschitz spaces, Monatsh. math., 129, 25-30, (2000) · Zbl 0991.54029 [9] L. Dubarbie, Separating maps between spaces of vector-valued absolutely continuous functions, Canad. Math. Bull., in press · Zbl 1217.47067 [10] Font, J.J.; Hernández, S., On separating maps between locally compact spaces, Arch. math. (basel), 63, 158-165, (1994) · Zbl 0805.46049 [11] Garrido, M.I.; Jaramillo, J.A., Homomorphisms on function lattices, Monatsh. math., 141, 127-146, (2004) · Zbl 1058.54008 [12] Garrido, M.I.; Jaramillo, J.A., Lipschitz-type functions on metric spaces, J. math. anal. appl., 340, 282-290, (2008) · Zbl 1139.46025 [13] Gau, H.L.; Jeang, J.S.; Wong, N.C., Biseparating linear maps between continuous vector-valued function spaces, J. aust. math. soc., 74, 101-109, (2003) · Zbl 1052.47017 [14] Hernández, S.; Beckenstein, E.; Narici, L., Banach – stone theorems and separating maps, Manuscripta math., 86, 409-416, (1995) · Zbl 0827.46032 [15] Jarosz, K., Automatic continuity of separating linear isomorphisms, Canad. math. bull., 33, 139-144, (1990) · Zbl 0714.46040 [16] Jeang, J.S.; Wong, N.C., On the banach – stone problem, Studia math., 155, 95-105, (2003) · Zbl 1056.46011 [17] Jeang, J.S.; Wong, N.C., Weighted composition operators of $$C_0(X)$$’s, J. math. anal. appl., 201, 981-993, (1996) · Zbl 0936.47011 [18] Jiménez-Vargas, A., Disjointness preserving operators between little Lipschitz algebras, J. math. anal. appl., 337, 984-993, (2008) · Zbl 1159.46030 [19] Jiménez-Vargas, A.; Villegas-Vallecillos, M.; Wang, Y.S., Banach – stone theorems for vector-valued little Lipschitz functions, Publ. math. debrecen, 74, 1-2, 81-100, (2009) · Zbl 1210.46027 [20] A. Jiménez-Vargas, Y.S. Wang, Linear biseparating maps between vector-valued little Lipschitz function spaces, preprint · Zbl 1211.46033 [21] Kantrowitz, R.; Neumann, M., Disjointness preserving and local operators on algebras of differentiable functions, Glasg. math. J., 43, 295-309, (2001) · Zbl 0994.47030 [22] Miao, X.; Cao, J.; Xiong, H., Banach – stone theorems and Riesz algebras, J. math. anal. appl., 313, 177-183, (2006) · Zbl 1102.46017 [23] Sherbert, D.R., Banach algebras of Lipschitz functions, Pacific J. math., 13, 1387-1399, (1963) · Zbl 0121.10203 [24] Su, Li Pi, Algebraic properties of certain rings of continuous functions, Pacific J. math., 27, 175-191, (1968) · Zbl 0165.47403 [25] Weaver, N., Lipschitz algebras, (1999), World Scientific Publishing · Zbl 0936.46002 [26] T.C. Wu, Disjointness preserving operators between Lipschitz spaces, Master Thesis, NSYSU, Kaohsiung, Taiwan, 2006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.